diff --git a/main.py b/main.py index 2b1d91f..0bfcea3 100644 --- a/main.py +++ b/main.py @@ -1,28 +1,35 @@ import argparse import sys +import os import time -def print_train_outcome(outcome, trained_eps = 0): +# Define helper functions +def log_train_outcome(outcome, trained_eps = 0): format_vars = { 'trained_eps': trained_eps, 'count': len(train_outcome), 'sum': sum(train_outcome), 'mean': sum(train_outcome) / len(train_outcome), 'time': int(time.time()) } - print("train;{time};{trained_eps};{count};{sum};{mean}".format(**format_vars)) + with open(os.path.join(config['model_path'], 'logs', "train.log"), 'a+') as f: + f.write("{time};{trained_eps};{count};{sum};{mean}".format(**format_vars) + "\n") + -def print_eval_outcomes(outcomes, trained_eps = 0): +def log_eval_outcomes(outcomes, trained_eps = 0): for outcome in outcomes: - scores = outcome[1] - format_vars = { 'trained_eps': trained_eps, - 'method': outcome[0], - 'count': len(scores), - 'sum': sum(scores), - 'mean': sum(scores) / len(scores), - 'time': int(time.time()) - } - print("eval;{time};{method};{trained_eps};{count};{sum};{mean}".format(**format_vars)) + scores = outcome[1] + format_vars = { 'trained_eps': trained_eps, + 'method': outcome[0], + 'count': len(scores), + 'sum': sum(scores), + 'mean': sum(scores) / len(scores), + 'time': int(time.time()) + } + with open(os.path.join(config['model_path'], 'logs', "eval.log"), 'a+') as f: + f.write("{time};{method};{trained_eps};{count};{sum};{mean}".format(**format_vars) + "\n") + +# Parse command line arguments parser = argparse.ArgumentParser(description="Backgammon games") parser.add_argument('--episodes', action='store', dest='episode_count', type=int, default=1000, @@ -37,6 +44,8 @@ parser.add_argument('--eval', action='store_true', help='whether to evaluate the neural network with a random choice bot') parser.add_argument('--train', action='store_true', help='whether to train the neural network') +parser.add_argument('--eval-after-train', action='store_true', dest='eval_after_train', + help='whether to evaluate after each training session') parser.add_argument('--play', action='store_true', help='whether to play with the neural network') parser.add_argument('--start-episode', action='store', dest='start_episode', @@ -52,33 +61,43 @@ config = { 'train': args.train, 'play': args.play, 'eval': args.eval, + 'eval_after_train': args.eval_after_train, 'start_episode': args.start_episode } -#print("-"*30) -#print(type(args.eval_methods)) -#print(args.eval_methods) -#print("-"*30) +# Make sure directories exist +model_path = os.path.join(config['model_path']) +log_path = os.path.join(model_path, 'logs') +if not os.path.isdir(model_path): + os.mkdir(model_path) +if not os.path.isdir(log_path): + os.mkdir(log_path) + +# Set up game import game g = game.Game(config = config) g.set_up_bots() -episode_count = args.episode_count +# Set up variables +episode_count = config['episode_count'] + + +# Do actions specified by command-line if args.train: eps = config['start_episode'] while True: train_outcome = g.train_model(episodes = episode_count, trained_eps = eps) eps += episode_count - print_train_outcome(train_outcome, trained_eps = eps) - if args.eval: + log_train_outcome(train_outcome, trained_eps = eps) + if config['eval_after_train']: eval_outcomes = g.eval(trained_eps = eps) - print_eval_outcomes(eval_outcomes, trained_eps = eps) - sys.stdout.flush() + log_eval_outcomes(eval_outcomes, trained_eps = eps) elif args.eval: + eps = config['start_episode'] outcomes = g.eval() - print_eval_outcomes(outcomes, trained_eps = 0) + log_eval_outcomes(outcomes, trained_eps = eps) #elif args.play: # g.play(episodes = episode_count)