clean up and move things to network.py
This commit is contained in:
parent
9b96cf41da
commit
99783ee4f8
12
bot.py
12
bot.py
|
@ -12,16 +12,9 @@ class Bot:
|
||||||
self.cup = Cup()
|
self.cup = Cup()
|
||||||
self.sym = sym
|
self.sym = sym
|
||||||
self.graph = tf.Graph()
|
self.graph = tf.Graph()
|
||||||
with self.graph.as_default():
|
|
||||||
self.session = tf.Session()
|
self.network = Network(config, name)
|
||||||
self.network = Network(self.session, config, name)
|
|
||||||
self.network.restore_model()
|
self.network.restore_model()
|
||||||
variables_names = [v.name for v in tf.trainable_variables()]
|
|
||||||
values = self.session.run(variables_names)
|
|
||||||
for k, v in zip(variables_names, values):
|
|
||||||
print("Variable: ", k)
|
|
||||||
print("Shape: ", v.shape)
|
|
||||||
print(v)
|
|
||||||
|
|
||||||
def restore_model(self):
|
def restore_model(self):
|
||||||
with self.graph.as_default():
|
with self.graph.as_default():
|
||||||
|
@ -36,6 +29,7 @@ class Bot:
|
||||||
def get_network(self):
|
def get_network(self):
|
||||||
return self.network
|
return self.network
|
||||||
|
|
||||||
|
# TODO: DEPRECATE
|
||||||
def make_move(self, board, sym, roll):
|
def make_move(self, board, sym, roll):
|
||||||
# print(Board.pretty(board))
|
# print(Board.pretty(board))
|
||||||
legal_moves = Board.calculate_legal_states(board, sym, roll)
|
legal_moves = Board.calculate_legal_states(board, sym, roll)
|
||||||
|
|
55
game.py
55
game.py
|
@ -83,61 +83,6 @@ class Game:
|
||||||
print(Board.outcome(self.board))
|
print(Board.outcome(self.board))
|
||||||
|
|
||||||
|
|
||||||
def train_model(self, episodes=1000, save_step_size = 100, trained_eps = 0):
|
|
||||||
start_time = time.time()
|
|
||||||
|
|
||||||
def print_time_estimate(eps_completed):
|
|
||||||
cur_time = time.time()
|
|
||||||
time_diff = cur_time - start_time
|
|
||||||
eps_per_sec = eps_completed / time_diff
|
|
||||||
secs_per_ep = time_diff / eps_completed
|
|
||||||
eps_remaining = (episodes - eps_completed)
|
|
||||||
sys.stderr.write("[TRAIN] Averaging {per_sec} episodes per second\n".format(per_sec = round(eps_per_sec, 2)))
|
|
||||||
sys.stderr.write("[TRAIN] {eps_remaining} episodes remaining; approx. {time_remaining} seconds remaining\n".format(eps_remaining = eps_remaining, time_remaining = int(eps_remaining * secs_per_ep)))
|
|
||||||
|
|
||||||
|
|
||||||
sys.stderr.write("[TRAIN] Training {} episodes and save_step_size {}\n".format(episodes, save_step_size))
|
|
||||||
outcomes = []
|
|
||||||
for episode in range(1, episodes + 1):
|
|
||||||
sys.stderr.write("[TRAIN] Episode {}".format(episode + trained_eps))
|
|
||||||
self.board = Board.initial_state
|
|
||||||
|
|
||||||
prev_board, prev_board_value = self.best_move_and_score()
|
|
||||||
# find the best move here, make this move, then change turn as the
|
|
||||||
# first thing inside of the while loop and then call
|
|
||||||
# best_move_and_score to get V_t+1
|
|
||||||
|
|
||||||
while Board.outcome(self.board) is None:
|
|
||||||
self.next_round()
|
|
||||||
cur_board, cur_board_value = self.best_move_and_score()
|
|
||||||
self.p1.get_network().train(prev_board, cur_board_value)
|
|
||||||
prev_board = cur_board
|
|
||||||
|
|
||||||
# print("-"*30)
|
|
||||||
# print(Board.pretty(self.board))
|
|
||||||
# print("/"*30)
|
|
||||||
sys.stderr.write("\t outcome {}".format(Board.outcome(self.board)[1]))
|
|
||||||
outcomes.append(Board.outcome(self.board)[1])
|
|
||||||
final_score = np.array([ Board.outcome(self.board)[1] ]).reshape((1, 1))
|
|
||||||
self.p1.get_network().train(prev_board, final_score)
|
|
||||||
|
|
||||||
sys.stderr.write("\n")
|
|
||||||
|
|
||||||
if episode % min(save_step_size, episodes) == 0:
|
|
||||||
sys.stderr.write("[TRAIN] Saving model...\n")
|
|
||||||
self.p1.get_network().save_model(episode+trained_eps)
|
|
||||||
sys.stderr.write("[TRAIN] Loading model for training opponent...\n")
|
|
||||||
self.p2.restore_model()
|
|
||||||
|
|
||||||
if episode % 50 == 0:
|
|
||||||
print_time_estimate(episode)
|
|
||||||
|
|
||||||
sys.stderr.write("[TRAIN] Saving model for final episode...\n")
|
|
||||||
self.p1.get_network().save_model(episode+trained_eps)
|
|
||||||
self.p2.restore_model()
|
|
||||||
|
|
||||||
return outcomes
|
|
||||||
|
|
||||||
def next_round_test(self):
|
def next_round_test(self):
|
||||||
print(self.board)
|
print(self.board)
|
||||||
print()
|
print()
|
||||||
|
|
10
main.py
10
main.py
|
@ -65,6 +65,7 @@ parser.add_argument('--list-models', action='store_true',
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
config = {
|
config = {
|
||||||
|
'model': args.model,
|
||||||
'model_path': os.path.join(model_storage_path, args.model),
|
'model_path': os.path.join(model_storage_path, args.model),
|
||||||
'episode_count': args.episode_count,
|
'episode_count': args.episode_count,
|
||||||
'eval_methods': args.eval_methods,
|
'eval_methods': args.eval_methods,
|
||||||
|
@ -86,10 +87,8 @@ if not os.path.isdir(log_path):
|
||||||
os.mkdir(log_path)
|
os.mkdir(log_path)
|
||||||
|
|
||||||
|
|
||||||
# Set up game
|
# Set up network
|
||||||
import game
|
from network import Network
|
||||||
g = game.Game(config = config)
|
|
||||||
g.set_up_bots()
|
|
||||||
|
|
||||||
|
|
||||||
# Set up variables
|
# Set up variables
|
||||||
|
@ -111,9 +110,10 @@ if args.list_models:
|
||||||
sys.stderr.write(" {name}: {eps_trained}\n".format(name = model[0], eps_trained = model[1]))
|
sys.stderr.write(" {name}: {eps_trained}\n".format(name = model[0], eps_trained = model[1]))
|
||||||
|
|
||||||
elif args.train:
|
elif args.train:
|
||||||
|
network = Network(config, config['model'])
|
||||||
eps = config['start_episode']
|
eps = config['start_episode']
|
||||||
while True:
|
while True:
|
||||||
train_outcome = g.train_model(episodes = episode_count, trained_eps = eps)
|
train_outcome = network.train_model(episodes = episode_count, trained_eps = eps)
|
||||||
eps += episode_count
|
eps += episode_count
|
||||||
log_train_outcome(train_outcome, trained_eps = eps)
|
log_train_outcome(train_outcome, trained_eps = eps)
|
||||||
if config['eval_after_train']:
|
if config['eval_after_train']:
|
||||||
|
|
113
network.py
113
network.py
|
@ -3,6 +3,9 @@ from cup import Cup
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from board import Board
|
from board import Board
|
||||||
import os
|
import os
|
||||||
|
import time
|
||||||
|
import sys
|
||||||
|
import random
|
||||||
|
|
||||||
class Network:
|
class Network:
|
||||||
hidden_size = 40
|
hidden_size = 40
|
||||||
|
@ -17,18 +20,12 @@ class Network:
|
||||||
def custom_tanh(self, x, name=None):
|
def custom_tanh(self, x, name=None):
|
||||||
return tf.scalar_mul(tf.constant(2.00), tf.tanh(x, name))
|
return tf.scalar_mul(tf.constant(2.00), tf.tanh(x, name))
|
||||||
|
|
||||||
def __init__(self, session, config, name):
|
def __init__(self, config, name):
|
||||||
self.config = config
|
self.config = config
|
||||||
self.session = session
|
self.session = tf.Session()
|
||||||
self.checkpoint_path = config['model_path']
|
self.checkpoint_path = config['model_path']
|
||||||
self.name = name
|
self.name = name
|
||||||
|
|
||||||
# Restore trained episode count for model
|
|
||||||
episode_count_path = os.path.join(self.checkpoint_path, "episodes_trained")
|
|
||||||
if os.path.isfile(episode_count_path):
|
|
||||||
with open(episode_count_path, 'r') as f:
|
|
||||||
self.config['start_episode'] = int(f.read())
|
|
||||||
|
|
||||||
# input = x
|
# input = x
|
||||||
self.x = tf.placeholder('float', [1, Network.input_size], name='x')
|
self.x = tf.placeholder('float', [1, Network.input_size], name='x')
|
||||||
self.value_next = tf.placeholder('float', [1, Network.output_size], name="value_next")
|
self.value_next = tf.placeholder('float', [1, Network.output_size], name="value_next")
|
||||||
|
@ -52,6 +49,8 @@ class Network:
|
||||||
# tf.reduce_sum basically finds the sum of its input, so this gives the
|
# tf.reduce_sum basically finds the sum of its input, so this gives the
|
||||||
# difference between the two values, in case they should be lists, which
|
# difference between the two values, in case they should be lists, which
|
||||||
# they might be if our input changes
|
# they might be if our input changes
|
||||||
|
|
||||||
|
# TODO: Alexander thinks that self.value will be computed twice (instead of once)
|
||||||
difference_in_values = tf.reduce_sum(self.value_next - self.value, name='difference')
|
difference_in_values = tf.reduce_sum(self.value_next - self.value, name='difference')
|
||||||
|
|
||||||
trainable_vars = tf.trainable_variables()
|
trainable_vars = tf.trainable_variables()
|
||||||
|
@ -71,6 +70,8 @@ class Network:
|
||||||
self.saver = tf.train.Saver(max_to_keep=1)
|
self.saver = tf.train.Saver(max_to_keep=1)
|
||||||
self.session.run(tf.global_variables_initializer())
|
self.session.run(tf.global_variables_initializer())
|
||||||
|
|
||||||
|
self.restore_model()
|
||||||
|
|
||||||
def eval_state(self, state):
|
def eval_state(self, state):
|
||||||
# Run state through a network
|
# Run state through a network
|
||||||
|
|
||||||
|
@ -122,12 +123,25 @@ class Network:
|
||||||
print("[NETWK] ({name}) Restoring model from:".format(name = self.name),
|
print("[NETWK] ({name}) Restoring model from:".format(name = self.name),
|
||||||
str(latest_checkpoint))
|
str(latest_checkpoint))
|
||||||
self.saver.restore(self.session, latest_checkpoint)
|
self.saver.restore(self.session, latest_checkpoint)
|
||||||
|
variables_names = [v.name for v in tf.trainable_variables()]
|
||||||
|
values = self.session.run(variables_names)
|
||||||
|
for k, v in zip(variables_names, values):
|
||||||
|
print("Variable: ", k)
|
||||||
|
print("Shape: ", v.shape)
|
||||||
|
print(v)
|
||||||
|
|
||||||
|
# Restore trained episode count for model
|
||||||
|
episode_count_path = os.path.join(self.checkpoint_path, "episodes_trained")
|
||||||
|
if os.path.isfile(episode_count_path):
|
||||||
|
with open(episode_count_path, 'r') as f:
|
||||||
|
self.config['start_episode'] = int(f.read())
|
||||||
|
|
||||||
# Have a circular dependency, #fuck, need to rewrite something
|
# Have a circular dependency, #fuck, need to rewrite something
|
||||||
def train(self, board, v_next):
|
def adjust_weights(self, board, v_next):
|
||||||
# print("lol")
|
# print("lol")
|
||||||
board = np.array(board).reshape((1,26))
|
board = np.array(board).reshape((1,26))
|
||||||
self.session.run(self.training_op, feed_dict = {self.x:board, self.value_next: v_next})
|
self.session.run(self.training_op, feed_dict = { self.x: board,
|
||||||
|
self.value_next: v_next })
|
||||||
|
|
||||||
|
|
||||||
# while game isn't done:
|
# while game isn't done:
|
||||||
|
@ -138,6 +152,85 @@ class Network:
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def make_move(self, board, roll):
|
||||||
|
# print(Board.pretty(board))
|
||||||
|
legal_moves = Board.calculate_legal_states(board, 1, roll)
|
||||||
|
moves_and_scores = [ (move, self.eval_state(np.array(move).reshape(1,26))) for move in legal_moves ]
|
||||||
|
scores = [ x[1] for x in moves_and_scores ]
|
||||||
|
best_score_index = np.array(scores).argmax()
|
||||||
|
best_move_pair = moves_and_scores[best_score_index]
|
||||||
|
#print("Found the best state, being:", np.array(move_scores).argmax())
|
||||||
|
return best_move_pair
|
||||||
|
|
||||||
|
|
||||||
|
def train_model(self, episodes=1000, save_step_size = 100, trained_eps = 0):
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
def print_time_estimate(eps_completed):
|
||||||
|
cur_time = time.time()
|
||||||
|
time_diff = cur_time - start_time
|
||||||
|
eps_per_sec = eps_completed / time_diff
|
||||||
|
secs_per_ep = time_diff / eps_completed
|
||||||
|
eps_remaining = (episodes - eps_completed)
|
||||||
|
sys.stderr.write("[TRAIN] Averaging {per_sec} episodes per second\n".format(per_sec = round(eps_per_sec, 2)))
|
||||||
|
sys.stderr.write("[TRAIN] {eps_remaining} episodes remaining; approx. {time_remaining} seconds remaining\n".format(eps_remaining = eps_remaining, time_remaining = int(eps_remaining * secs_per_ep)))
|
||||||
|
|
||||||
|
|
||||||
|
sys.stderr.write("[TRAIN] Training {} episodes and save_step_size {}\n".format(episodes, save_step_size))
|
||||||
|
outcomes = []
|
||||||
|
for episode in range(1, episodes + 1):
|
||||||
|
sys.stderr.write("[TRAIN] Episode {}".format(episode + trained_eps))
|
||||||
|
# TODO decide which player should be here
|
||||||
|
player = 1
|
||||||
|
|
||||||
|
roll = (random.randrange(1,7), random.randrange(1,7))
|
||||||
|
prev_board, _ = self.make_move(Board.flip(Board.initial_state) if player == -1 else Board.initial_state, roll)
|
||||||
|
if player == -1:
|
||||||
|
prev_board = Board.flip(prev_board)
|
||||||
|
|
||||||
|
# find the best move here, make this move, then change turn as the
|
||||||
|
# first thing inside of the while loop and then call
|
||||||
|
# best_move_and_score to get V_t+1
|
||||||
|
|
||||||
|
# i = 0
|
||||||
|
while Board.outcome(prev_board) is None:
|
||||||
|
# print("-"*30)
|
||||||
|
# print(i)
|
||||||
|
# print(roll)
|
||||||
|
# print(Board.pretty(prev_board))
|
||||||
|
# print("/"*30)
|
||||||
|
# i += 1
|
||||||
|
|
||||||
|
player *= -1
|
||||||
|
roll = (random.randrange(1,7), random.randrange(1,7))
|
||||||
|
|
||||||
|
cur_board, cur_board_value = self.make_move(Board.flip(prev_board) if player == -1 else prev_board, roll)
|
||||||
|
if player == -1:
|
||||||
|
cur_board = Board.flip(cur_board)
|
||||||
|
|
||||||
|
self.adjust_weights(prev_board, cur_board_value)
|
||||||
|
|
||||||
|
prev_board = cur_board
|
||||||
|
|
||||||
|
final_board = prev_board
|
||||||
|
sys.stderr.write("\t outcome {}".format(Board.outcome(final_board)[1]))
|
||||||
|
outcomes.append(Board.outcome(final_board)[1])
|
||||||
|
final_score = np.array([ Board.outcome(final_board)[1] ])
|
||||||
|
self.adjust_weights(prev_board, final_score.reshape((1, 1)))
|
||||||
|
|
||||||
|
sys.stderr.write("\n")
|
||||||
|
|
||||||
|
if episode % min(save_step_size, episodes) == 0:
|
||||||
|
sys.stderr.write("[TRAIN] Saving model...\n")
|
||||||
|
self.save_model(episode+trained_eps)
|
||||||
|
|
||||||
|
if episode % 50 == 0:
|
||||||
|
print_time_estimate(episode)
|
||||||
|
|
||||||
|
sys.stderr.write("[TRAIN] Saving model for final episode...\n")
|
||||||
|
self.save_model(episode+trained_eps)
|
||||||
|
|
||||||
|
return outcomes
|
||||||
|
|
||||||
|
|
||||||
# take turn, which finds the best state and picks it, based on the current network
|
# take turn, which finds the best state and picks it, based on the current network
|
||||||
|
|
Loading…
Reference in New Issue
Block a user