Merge branch 'master' of gitfub.space:Pownie/backgammon
This commit is contained in:
commit
7c9127b746
12
network.py
12
network.py
|
@ -19,6 +19,11 @@ class Network:
|
||||||
# TODO: Actually compile tensorflow properly
|
# TODO: Actually compile tensorflow properly
|
||||||
#os.environ["TF_CPP_MIN_LOG_LEVEL"]="2"
|
#os.environ["TF_CPP_MIN_LOG_LEVEL"]="2"
|
||||||
|
|
||||||
|
def custom_tanh(self, x, name=None):
|
||||||
|
a = tf.Variable(2.00, tf.float32)
|
||||||
|
return tf.scalar_mul(a, tf.tanh(x, name))
|
||||||
|
|
||||||
|
|
||||||
def __init__(self, session):
|
def __init__(self, session):
|
||||||
self.session = session
|
self.session = session
|
||||||
self.config = Config
|
self.config = Config
|
||||||
|
@ -40,12 +45,10 @@ class Network:
|
||||||
b_1 = tf.zeros(hidden_size,)
|
b_1 = tf.zeros(hidden_size,)
|
||||||
b_2 = tf.zeros(output_size,)
|
b_2 = tf.zeros(output_size,)
|
||||||
|
|
||||||
value_after_input = tf.sigmoid(tf.matmul(self.x, W_1) + b_1, name='hidden_layer')
|
value_after_input = self.custom_tanh(tf.matmul(self.x, W_1) + b_1, name='hidden_layer')
|
||||||
|
|
||||||
# TODO: Remember to make this tanh * 2
|
# TODO: Remember to make this tanh * 2
|
||||||
# self.value = tf.layers.dense(input=value_after_input, units=hidden_size, \
|
self.value = self.custom_tanh(tf.matmul(value_after_input, W_2) + b_2, name='output_layer')
|
||||||
# activation=self.custom_tanh, kernel_initializer=xavier_init())
|
|
||||||
self.value = 2*tf.nn.tanh(tf.matmul(value_after_input, W_2) + b_2, name='output_layer')
|
|
||||||
|
|
||||||
# tf.reduce_sum basically finds the sum of it's input, so this gives the difference between the two values, in case they should be lists, which they might be if our input changes
|
# tf.reduce_sum basically finds the sum of it's input, so this gives the difference between the two values, in case they should be lists, which they might be if our input changes
|
||||||
difference_in_values = tf.reduce_sum(self.value_next - self.value, name='difference')
|
difference_in_values = tf.reduce_sum(self.value_next - self.value, name='difference')
|
||||||
|
@ -67,7 +70,6 @@ class Network:
|
||||||
self.saver = tf.train.Saver(max_to_keep=1)
|
self.saver = tf.train.Saver(max_to_keep=1)
|
||||||
self.session.run(tf.global_variables_initializer())
|
self.session.run(tf.global_variables_initializer())
|
||||||
|
|
||||||
|
|
||||||
def eval_state(self, state):
|
def eval_state(self, state):
|
||||||
# Run state through a network
|
# Run state through a network
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user