Added code for 2-ply look-ahead

This commit is contained in:
Alexander Munch-Hansen 2018-04-22 15:07:19 +02:00
parent 1062b72bda
commit 77d82f6883

View File

@ -8,6 +8,7 @@ import sys
import random
from eval import Eval
import glob
from operator import itemgetter
class Network:
# board_features_quack has size 28
@ -35,13 +36,16 @@ class Network:
]
self.output_size = 1
self.hidden_size = 40
# Can't remember the best learning_rate, look this up
self.max_learning_rate = 0.1
self.min_learning_rate = 0.001
# self.learning_rate = 0.01
self.global_step = tf.Variable(0, trainable=False, name="global_step")
self.learning_rate = tf.maximum(self.min_learning_rate, tf.train.exponential_decay(self.max_learning_rate, self.global_step, 50000, 0.96, staircase=True), name="learning_rate")
self.learning_rate = tf.maximum(self.min_learning_rate,
tf.train.exponential_decay(self.max_learning_rate,
self.global_step, 50000,
0.96,
staircase=True),
name="learning_rate")
@ -53,7 +57,6 @@ class Network:
else:
self.episodes_trained = 0
# input = x
self.x = tf.placeholder('float', [1, self.input_size], name='input')
self.value_next = tf.placeholder('float', [1, self.output_size], name="value_next")
@ -105,40 +108,6 @@ class Network:
self.saver = tf.train.Saver(max_to_keep=1)
def eval_state(self, sess, state):
# Run state through a network
# Remember to create placeholders for everything because wtf tensorflow
# and graphs
# Remember to create the dense layers
# Figure out a way of giving a layer a custom activiation function (we
# want something which gives [-2,2]. Naively tahn*2, however I fell this
# is wrong.
# tf.group, groups a bunch of actions, so calculate the different
# gradients for the different weights, by using tf.trainable_variables()
# to find all variables and tf.gradients(current_value,
# trainable_variables) to find all the gradients. We can then loop
# through this and calculate the trace for each gradient and variable
# pair (note, zip can be used to combine the two lists found before),
# and then we can calculate the overall change in weights, based on the
# formula listed in tesauro (learning_rate * difference_in_values *
# trace), this calculation can be assigned to a tf variable and put in a
# list and then this can be grouped into a single operation, essentially
# building our own backprop function.
# Grouping them is done by
# tf.group(*the_gradients_from_before_we_want_to_apply,
# name="training_op")
# If we remove the eligibily trace to begin with, we only have to
# implement learning_rate * (difference_in_values) * gradients (the
# before-mentioned calculation.
# print("Network is evaluating")
# print("eval ({})".format(self.name), state, val, sep="\n")
return sess.run(self.value, feed_dict={self.x: state})
def save_model(self, sess, episode_count, global_step):
@ -170,16 +139,69 @@ class Network:
def make_move(self, sess, board, roll, player):
# print(Board.pretty(board))
legal_moves = Board.calculate_legal_states(board, player, roll)
moves_and_scores = [(move, self.eval_state(sess, self.board_trans_func(move, player))) for move in legal_moves]
scores = [x[1] if np.sign(player) > 0 else 1-x[1] for x in moves_and_scores]
best_score_index = np.array(scores).argmax()
best_move_pair = moves_and_scores[best_score_index]
# print("Found the best state, being:", np.array(move_scores).argmax())
return best_move_pair
def gen_21_rolls(self):
a = []
for x in range(1,7):
for y in range(1,7):
if not [x,y] in a and not [y,x] in a:
a.append([x,y])
return a
def calculate_2_ply(self, sess, board, roll, player):
"""
Find the best move based on a 2-ply look-ahead. First the best move is found for a single ply and then an
exhaustive search is performed on the best 15 moves from the single ply.
:param sess:
:param board:
:param roll: The original roll
:param player: The current player
:return: Best possible move based on 2-ply look-ahead
"""
init_legal_states = Board.calculate_legal_states(board, player, roll)
zero_ply_moves_and_scores = [(move, self.eval_state(sess, self.board_trans_func(move, player))) for move in init_legal_states]
# pythons reverse is in place and I can't call [:15] on it, without applying it to an object like so. Fuck.
best_fifteen = sorted(zero_ply_moves_and_scores, key=itemgetter(1))
best_fifteen.reverse()
best_fifteen_boards = [x[0] for x in best_fifteen[:15]]
all_rolls = self.gen_21_rolls()
all_rolls_scores = []
for a_board in best_fifteen_boards:
a_board_scores = []
for roll in all_rolls:
spec_roll_scores = []
all_rolls_boards = Board.calculate_legal_states(a_board, player*-1, roll)
spec_roll_scores.append([self.eval_state(sess, self.board_trans_func(new_board, player*-1)) for new_board in all_rolls_boards])
best_score = max(spec_roll_scores)
a_board_scores.append(best_score)
all_rolls_scores.append(sum(a_board_scores)/len(a_board_scores))
best_score_index = np.array(all_rolls_scores).argmax()
best_board = best_fifteen_boards[best_score_index]
return [best_board, max(all_rolls_scores)]
def eval(self, episode_count, trained_eps = 0, tf_session = None):
def do_eval(sess, method, episodes = 1000, trained_eps = 0):
start_time = time.time()
@ -198,47 +220,20 @@ class Network:
sys.stderr.write(
"[EVAL ] Evaluating {eps} episode(s) with method '{method}'\n".format(eps=episodes, method=method))
if method == 'random':
outcomes = []
"""for i in range(1, episodes + 1):
sys.stderr.write("[EVAL ] Episode {}".format(i))
board = Board.initial_state
while Board.outcome(board) is None:
roll = (random.randrange(1, 7), random.randrange(1, 7))
board = (self.p1.make_move(sess, board, self.p1.get_sym(), roll))[0]
roll = (random.randrange(1, 7), random.randrange(1, 7))
board = Board.flip(Eval.make_random_move(Board.flip(board), 1, roll))
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
outcomes.append(Board.outcome(board)[1])
sys.stderr.write("\n")
if i % 50 == 0:
print_time_estimate(i)"""
return outcomes
elif method == 'pubeval':
if method == 'pubeval':
outcomes = []
# Add the evaluation code for pubeval, the bot has a method make_pubeval_move(board, sym, roll),
# which can be used to get the best move according to pubeval
for i in range(1, episodes + 1):
sys.stderr.write("[EVAL ] Episode {}".format(i))
board = Board.initial_state
# print("init:", board, sep="\n")
while Board.outcome(board) is None:
# print("-"*30)
roll = (random.randrange(1, 7), random.randrange(1, 7))
# print(roll)
# prev_board = tuple(board)
board = (self.make_move(sess, board, roll, 1))[0]
# print("post p1:", board, sep="\n")
# print("."*30)
roll = (random.randrange(1, 7), random.randrange(1, 7))
# print(roll)
# prev_board = tuple(board)
board = Eval.make_pubeval_move(board, -1, roll)[0][0:26]
# print("post pubeval:", board, sep="\n")
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
outcomes.append(Board.outcome(board)[1])
@ -251,28 +246,17 @@ class Network:
elif method == 'dumbeval':
outcomes = []
# Add the evaluation code for pubeval, the bot has a method make_pubeval_move(board, sym, roll),
# which can be used to get the best move according to pubeval
for i in range(1, episodes + 1):
sys.stderr.write("[EVAL ] Episode {}".format(i))
board = Board.initial_state
# print("init:", board, sep="\n")
while Board.outcome(board) is None:
# print("-"*30)
roll = (random.randrange(1, 7), random.randrange(1, 7))
# print(roll)
# prev_board = tuple(board)
board = (self.make_move(sess, board, roll, 1))[0]
# print("post p1:", board, sep="\n")
# print("."*30)
roll = (random.randrange(1, 7), random.randrange(1, 7))
# print(roll)
# prev_board = tuple(board)
board = Eval.make_dumbeval_move(board, -1, roll)[0][0:26]
# print("post pubeval:", board, sep="\n")
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
outcomes.append(Board.outcome(board)[1])
@ -283,31 +267,6 @@ class Network:
return outcomes
elif method == 'dumbmodel':
outcomes = []
"""
config_prime = self.config.copy()
config_prime['model_path'] = os.path.join(config_prime['model_storage_path'], 'dumbmodel')
eval_bot = Bot(1, config = config_prime, name = "dumbmodel")
#print(self.config, "\n", config_prime)
outcomes = []
for i in range(1, episodes + 1):
sys.stderr.write("[EVAL ] Episode {}".format(i))
board = Board.initial_state
while Board.outcome(board) is None:
roll = (random.randrange(1,7), random.randrange(1,7))
board = (self.make_move(board, self.p1.get_sym(), roll))[0]
roll = (random.randrange(1,7), random.randrange(1,7))
board = Board.flip(eval_bot.make_move(Board.flip(board), self.p1.get_sym(), roll)[0])
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
outcomes.append(Board.outcome(board)[1])
sys.stderr.write("\n")
if i % 50 == 0:
print_time_estimate(i)
"""
return outcomes
else:
sys.stderr.write("[EVAL ] Evaluation method '{}' is not defined\n".format(method))
return [0]
@ -363,27 +322,20 @@ class Network:
sys.stderr.write("[TRAIN] Training {} episodes and save_step_size {}\n".format(episodes, save_step_size))
outcomes = []
for episode in range(1, episodes + 1):
sys.stderr.write("[TRAIN] Episode {}".format(episode + trained_eps))
# TODO decide which player should be here
player = 1
prev_board = Board.initial_state
# find the best move here, make this move, then change turn as the
# first thing inside of the while loop and then call
# best_move_and_score to get V_t+1
i = 0
while Board.outcome(prev_board) is None:
i += 1
#print("PREEEV_BOOOOAAARD:",prev_board)
cur_board, cur_board_value = self.make_move(sess,
prev_board,
(random.randrange(1, 7), random.randrange(1, 7)), player)
#print("The current value:",cur_board_value)
(random.randrange(1, 7), random.randrange(1, 7)),
player)
# adjust weights
sess.run(self.training_op,
@ -392,7 +344,6 @@ class Network:
player *= -1
prev_board = cur_board
final_board = prev_board
@ -400,8 +351,6 @@ class Network:
outcomes.append(Board.outcome(final_board)[1])
final_score = np.array([Board.outcome(final_board)[1]])
scaled_final_score = ((final_score + 2) / 4)
#print("The difference in values:", scaled_final_score - cur_board_value)
# print("scaled_final_score",scaled_final_score)
with tf.name_scope("final"):
merged = tf.summary.merge_all()
@ -424,12 +373,4 @@ class Network:
writer.close()
return outcomes
# take turn, which finds the best state and picks it, based on the current network
# save current state
# run training operation (session.run(self.training_op, {x:x, value_next, value_next})), (something which does the backprop, based on the state after having taken a turn, found before, and the state we saved in the beginning and from now we'll save it at the end of the turn
# save the current state again, so we can continue running backprop based on the "previous" turn.
# NOTE: We need to make a method so that we can take a single turn or at least just pick the next best move, so we know how to evaluate according to TD-learning. Right now, our game just continues in a while loop without nothing to stop it!
return outcomes