We should now be able to both train and eval as per usual.
I've added a file "global_step", which works as the new global_step counter, so we can use it for exp_decay.
This commit is contained in:
parent
cb7e7b519c
commit
6429e0732c
14
main.py
14
main.py
|
@ -60,7 +60,8 @@ config = {
|
|||
'bench_storage_path': 'bench',
|
||||
'board_representation': args.board_rep,
|
||||
'force_creation': args.force_creation,
|
||||
'use_baseline': args.use_baseline
|
||||
'use_baseline': args.use_baseline,
|
||||
'global_step': 0
|
||||
}
|
||||
|
||||
# Create models folder
|
||||
|
@ -191,7 +192,7 @@ if __name__ == "__main__":
|
|||
episode_counts = [25, 50, 100, 250, 500, 1000, 2500, 5000,
|
||||
10000, 20000]
|
||||
|
||||
def do_eval(sess):
|
||||
def do_eval():
|
||||
for eval_method in config['eval_methods']:
|
||||
result_path = os.path.join(config['bench_storage_path'],
|
||||
eval_method) + "-{}.log".format(int(time.time()))
|
||||
|
@ -199,8 +200,7 @@ if __name__ == "__main__":
|
|||
for i in range(sample_count):
|
||||
start_time = time.time()
|
||||
# Evaluation measure to be benchmarked are described in `config`
|
||||
outcomes = network.eval(episode_count = n,
|
||||
tf_session = sess)
|
||||
outcomes = network.eval(episode_count = n)
|
||||
time_diff = time.time() - start_time
|
||||
log_bench_eval_outcomes(outcomes,
|
||||
time = time_diff,
|
||||
|
@ -210,8 +210,8 @@ if __name__ == "__main__":
|
|||
|
||||
# CMM: oh no
|
||||
import tensorflow as tf
|
||||
with tf.Session() as session:
|
||||
network.restore_model(session)
|
||||
do_eval(session)
|
||||
|
||||
network.restore_model()
|
||||
do_eval()
|
||||
|
||||
|
||||
|
|
142
network.py
142
network.py
|
@ -44,8 +44,6 @@ class Network:
|
|||
self.max_learning_rate = 0.1
|
||||
self.min_learning_rate = 0.001
|
||||
|
||||
self.global_step = tf.train.get_or_create_global_step()
|
||||
|
||||
#tf.train.get_or_create_global_step()
|
||||
# Restore trained episode count for model
|
||||
episode_count_path = os.path.join(self.checkpoint_path, "episodes_trained")
|
||||
|
@ -55,10 +53,18 @@ class Network:
|
|||
else:
|
||||
self.episodes_trained = 0
|
||||
|
||||
global_step_path = os.path.join(self.checkpoint_path, "global_step")
|
||||
if os.path.isfile(global_step_path):
|
||||
with open(global_step_path, 'r') as f:
|
||||
self.global_step = int(f.read())
|
||||
else:
|
||||
self.global_step = 0
|
||||
|
||||
|
||||
|
||||
self.model = tf.keras.Sequential([
|
||||
tf.keras.layers.Dense(40, activation="sigmoid", kernel_initializer=xavier_init,
|
||||
input_shape=(1,30)),
|
||||
input_shape=(1,self.input_size)),
|
||||
tf.keras.layers.Dense(1, activation="sigmoid", kernel_initializer=xavier_init)
|
||||
])
|
||||
|
||||
|
@ -72,11 +78,10 @@ class Network:
|
|||
def do_backprop(self, prev_state, value_next):
|
||||
|
||||
self.learning_rate = tf.maximum(self.min_learning_rate,
|
||||
self.exp_decay(self.max_learning_rate, self.episodes_trained, 0.96, 50000),
|
||||
self.exp_decay(self.max_learning_rate, self.global_step, 0.96, 50000),
|
||||
name="learning_rate")
|
||||
|
||||
# self.learning_rate = 0.1
|
||||
print(tf.train.get_global_step())
|
||||
|
||||
with tf.GradientTape() as tape:
|
||||
value = self.model(prev_state.reshape(1,-1))
|
||||
grads = tape.gradient(value, self.model.variables)
|
||||
|
@ -91,19 +96,24 @@ class Network:
|
|||
backprop_calc = self.learning_rate * difference_in_values * grad
|
||||
train_var.assign_add(backprop_calc)
|
||||
|
||||
print(self.episodes_trained)
|
||||
|
||||
def eval_state(self, sess, state):
|
||||
return sess.run(self.value, feed_dict={self.x: state})
|
||||
|
||||
def save_model(self, episode_count, global_step):
|
||||
tfe.Saver(self.model.variables).save(os.path.join(self.checkpoint_path, 'model.ckpt'), global_step=self.global_step)
|
||||
def eval_state(self, state):
|
||||
return self.model(state.reshape(1,-1))
|
||||
|
||||
def save_model(self, episode_count):
|
||||
tfe.Saver(self.model.variables).save(os.path.join(self.checkpoint_path, 'model.ckpt'))
|
||||
#self.saver.save(sess, os.path.join(self.checkpoint_path, 'model.ckpt'), global_step=global_step)
|
||||
with open(os.path.join(self.checkpoint_path, "episodes_trained"), 'w+') as f:
|
||||
print("[NETWK] ({name}) Saving model to:".format(name=self.name),
|
||||
os.path.join(self.checkpoint_path, 'model.ckpt'))
|
||||
f.write(str(episode_count) + "\n")
|
||||
|
||||
with open(os.path.join(self.checkpoint_path, "global_step"), 'w+') as f:
|
||||
print("[NETWK] ({name}) Saving global step to:".format(name=self.name),
|
||||
os.path.join(self.checkpoint_path, 'model.ckpt'))
|
||||
f.write(str(self.global_step) + "\n")
|
||||
|
||||
|
||||
def calc_vals(self, states):
|
||||
values = self.model.predict_on_batch(states)
|
||||
|
@ -134,20 +144,14 @@ class Network:
|
|||
if os.path.isfile(episode_count_path):
|
||||
with open(episode_count_path, 'r') as f:
|
||||
self.config['start_episode'] = int(f.read())
|
||||
# else:
|
||||
# latest_checkpoint = tf.train.latest_checkpoint("./")
|
||||
# print("[NETWK] ({name}) Restoring model from:".format(name=self.name),
|
||||
# str(latest_checkpoint))
|
||||
# tfe.Saver(self.model.variables).restore(latest_checkpoint)
|
||||
|
||||
#variables_names = [v.name for v in self.model.variables]
|
||||
global_step_path = os.path.join(self.checkpoint_path, "global_step")
|
||||
if os.path.isfile(global_step_path):
|
||||
with open(global_step_path, 'r') as f:
|
||||
self.config['global_step'] = int(f.read())
|
||||
|
||||
|
||||
|
||||
# Restore trained episode count for model
|
||||
#episode_count_path = os.path.join(self.checkpoint_path, "episodes_trained")
|
||||
#if os.path.isfile(episode_count_path):
|
||||
# with open(episode_count_path, 'r') as f:
|
||||
# self.config['start_episode'] = int(f.read())
|
||||
tf.train.get_or_create_global_step()
|
||||
|
||||
def make_move(self, board, roll, player):
|
||||
"""
|
||||
|
@ -161,10 +165,12 @@ class Network:
|
|||
:param player: Current player
|
||||
:return: A pair of the best state to go to, together with the score of that state
|
||||
"""
|
||||
legal_states = list(Board.calculate_legal_states(board, player, roll))
|
||||
legal_states = [list(tmp) for tmp in legal_states]
|
||||
legal_moves = list(Board.calculate_legal_states(board, player, roll))
|
||||
|
||||
legal_states = [list(tmp) for tmp in legal_moves]
|
||||
|
||||
legal_states = np.array([Board.board_features_quack_fat(tmp, player)[0] for tmp in legal_states])
|
||||
legal_moves = [self.board_trans_func(board, player) for board in Board.calculate_legal_states(board, player, roll)]
|
||||
|
||||
|
||||
scores = self.model.predict_on_batch(legal_states)
|
||||
transformed_scores = [x if np.sign(player) > 0 else 1 - x for x in scores]
|
||||
|
@ -172,7 +178,7 @@ class Network:
|
|||
best_score_idx = np.argmax(np.array(transformed_scores))
|
||||
best_move = legal_moves[best_score_idx]
|
||||
best_score = scores[best_score_idx]
|
||||
self.episodes_trained += 1
|
||||
|
||||
return [best_move, best_score]
|
||||
|
||||
def make_move_n_ply(self, sess, board, roll, player, n = 1):
|
||||
|
@ -385,7 +391,7 @@ class Network:
|
|||
return all_rolls_scores
|
||||
|
||||
|
||||
def eval(self, episode_count, trained_eps = 0, tf_session = None):
|
||||
def eval(self, episode_count, trained_eps = 0):
|
||||
"""
|
||||
Used to evaluate a model. Can either use pubeval, a model playing at an intermediate level, or dumbeval
|
||||
a model which has been given random weights, so it acts deterministically random.
|
||||
|
@ -396,7 +402,7 @@ class Network:
|
|||
:return: outcomes: The outcomes of the evaluation session
|
||||
"""
|
||||
|
||||
def do_eval(sess, method, episodes = 1000, trained_eps = 0):
|
||||
def do_eval(method, episodes = 1000, trained_eps = 0):
|
||||
"""
|
||||
Do the actual evaluation
|
||||
|
||||
|
@ -433,7 +439,7 @@ class Network:
|
|||
while Board.outcome(board) is None:
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
|
||||
board = (self.make_move(sess, board, roll, 1))[0]
|
||||
board = (self.make_move(board, roll, 1))[0]
|
||||
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
|
||||
|
@ -456,7 +462,7 @@ class Network:
|
|||
while Board.outcome(board) is None:
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
|
||||
board = (self.make_move(sess, board, roll, 1))[0]
|
||||
board = (self.make_move(board, roll, 1))[0]
|
||||
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
|
||||
|
@ -475,40 +481,26 @@ class Network:
|
|||
sys.stderr.write("[EVAL ] Evaluation method '{}' is not defined\n".format(method))
|
||||
return [0]
|
||||
|
||||
if tf_session == None:
|
||||
with tf.Session() as session:
|
||||
session.run(tf.global_variables_initializer())
|
||||
self.restore_model(session)
|
||||
outcomes = [ (method, do_eval(session,
|
||||
method,
|
||||
episode_count,
|
||||
trained_eps = trained_eps))
|
||||
for method
|
||||
in self.config['eval_methods'] ]
|
||||
return outcomes
|
||||
else:
|
||||
outcomes = [ (method, do_eval(tf_session,
|
||||
method,
|
||||
episode_count,
|
||||
trained_eps = trained_eps))
|
||||
for method
|
||||
in self.config['eval_methods'] ]
|
||||
return outcomes
|
||||
|
||||
outcomes = [ (method, do_eval(method,
|
||||
episode_count,
|
||||
trained_eps = trained_eps))
|
||||
for method
|
||||
in self.config['eval_methods'] ]
|
||||
return outcomes
|
||||
|
||||
def train_model(self, episodes=1000, save_step_size=100, trained_eps=0):
|
||||
with tf.Session() as sess:
|
||||
difference_in_vals = 0
|
||||
writer = tf.summary.FileWriter("/tmp/log/tf", sess.graph)
|
||||
|
||||
sess.run(tf.global_variables_initializer())
|
||||
self.restore_model(sess)
|
||||
self.restore_model()
|
||||
|
||||
variables_names = [v.name for v in tf.trainable_variables()]
|
||||
values = sess.run(variables_names)
|
||||
for k, v in zip(variables_names, values):
|
||||
print("Variable: ", k)
|
||||
print("Shape: ", v.shape)
|
||||
print(v)
|
||||
#variables_names = [v.name for v in tf.trainable_variables()]
|
||||
#values = sess.run(variables_names)
|
||||
#for k, v in zip(variables_names, values):
|
||||
# print("Variable: ", k)
|
||||
# print("Shape: ", v.shape)
|
||||
# print(v)
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
|
@ -536,21 +528,21 @@ class Network:
|
|||
i = 0
|
||||
while Board.outcome(prev_board) is None:
|
||||
i += 1
|
||||
self.global_step += 1
|
||||
|
||||
cur_board, cur_board_value = self.make_move(sess,
|
||||
prev_board,
|
||||
|
||||
cur_board, cur_board_value = self.make_move(prev_board,
|
||||
(random.randrange(1, 7), random.randrange(1, 7)),
|
||||
player)
|
||||
|
||||
difference_in_vals += abs((cur_board_value - self.eval_state(sess, self.board_trans_func(prev_board, player))))
|
||||
difference_in_vals += abs((cur_board_value - self.eval_state(self.board_trans_func(prev_board, player))))
|
||||
|
||||
|
||||
# adjust weights
|
||||
sess.run(self.training_op,
|
||||
feed_dict={self.x: self.board_trans_func(prev_board, player),
|
||||
self.value_next: cur_board_value})
|
||||
|
||||
player *= -1
|
||||
#print(cur_board)
|
||||
if Board.outcome(cur_board) is None:
|
||||
self.do_backprop(self.board_trans_func(prev_board, player), cur_board_value)
|
||||
player *= -1
|
||||
|
||||
prev_board = cur_board
|
||||
|
||||
|
@ -560,26 +552,22 @@ class Network:
|
|||
final_score = np.array([Board.outcome(final_board)[1]])
|
||||
scaled_final_score = ((final_score + 2) / 4)
|
||||
|
||||
with tf.name_scope("final"):
|
||||
merged = tf.summary.merge_all()
|
||||
global_step, summary, _ = sess.run([self.global_step, merged, self.training_op],
|
||||
feed_dict={self.x: self.board_trans_func(prev_board, player),
|
||||
self.value_next: scaled_final_score.reshape((1, 1))})
|
||||
writer.add_summary(summary, episode + trained_eps)
|
||||
|
||||
self.do_backprop(self.board_trans_func(prev_board, player), scaled_final_score.reshape(1,1))
|
||||
|
||||
|
||||
|
||||
sys.stderr.write("\n")
|
||||
|
||||
if episode % min(save_step_size, episodes) == 0:
|
||||
sys.stderr.write("[TRAIN] Saving model...\n")
|
||||
self.save_model(sess, episode + trained_eps, global_step)
|
||||
self.save_model(episode + trained_eps)
|
||||
|
||||
if episode % 50 == 0:
|
||||
print_time_estimate(episode)
|
||||
|
||||
sys.stderr.write("[TRAIN] Saving model for final episode...\n")
|
||||
self.save_model(sess, episode+trained_eps, global_step)
|
||||
|
||||
writer.close()
|
||||
self.save_model(episode+trained_eps)
|
||||
|
||||
return outcomes, difference_in_vals[0][0]
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user