Merge branch 'rework-1' into 'master'
Rework 1 See merge request Pownie/backgammon!4
This commit is contained in:
commit
3bcb7c5df9
3
.gitignore
vendored
3
.gitignore
vendored
|
@ -169,3 +169,6 @@ venv.bak/
|
|||
README.*
|
||||
!README.org
|
||||
models/
|
||||
.DS_Store
|
||||
bench/
|
||||
|
||||
|
|
47
bin/train-evaluate-save
Executable file
47
bin/train-evaluate-save
Executable file
|
@ -0,0 +1,47 @@
|
|||
#!/usr/bin/env ruby
|
||||
def save(model_name)
|
||||
require 'date'
|
||||
|
||||
models_dir = 'models'
|
||||
model_path = File.join(models_dir, model_name)
|
||||
if not File.exists? model_path then
|
||||
return false
|
||||
end
|
||||
|
||||
episode_count = (File.read File.join(model_path, 'episodes_trained')).to_i
|
||||
|
||||
puts "Found model #{model_name} with episodes #{episode_count} trained!"
|
||||
|
||||
file_name = "model-#{model_name}-#{episode_count}-#{Time.now.strftime('%Y%m%d-%H%M%S')}.tar.gz"
|
||||
save_path = File.join(models_dir, 'saves', file_name)
|
||||
puts "Saving to #{save_path}"
|
||||
|
||||
system("tar", "-cvzf", save_path, "-C", models_dir, model_name)
|
||||
|
||||
return true
|
||||
end
|
||||
|
||||
def train(model, episodes)
|
||||
system("python3", "main.py", "--train", "--model", model, "--episodes", episodes.to_s)
|
||||
end
|
||||
|
||||
def evaluate(model, episodes, method)
|
||||
system("python3", "main.py", "--eval" , "--model", model, "--episodes", episodes.to_s, "--eval-methods", method)
|
||||
end
|
||||
|
||||
model = ARGV[0]
|
||||
|
||||
if model.nil? then raise "no model specified" end
|
||||
|
||||
while true do
|
||||
save model
|
||||
train model, 1000
|
||||
save model
|
||||
train model, 1000
|
||||
3.times do
|
||||
evaluate model, 250, "pubeval"
|
||||
end
|
||||
3.times do
|
||||
evaluate model, 250, "dumbeval"
|
||||
end
|
||||
end
|
58
board.py
58
board.py
|
@ -31,11 +31,59 @@ class Board:
|
|||
board = list(board)
|
||||
positives = [x if x > 0 else 0 for x in board]
|
||||
negatives = [x if x < 0 else 0 for x in board]
|
||||
board.append(15 - sum(positives))
|
||||
board.append( 15 - sum(positives))
|
||||
board.append(-15 - sum(negatives))
|
||||
return tuple(board)
|
||||
|
||||
|
||||
|
||||
# quack
|
||||
@staticmethod
|
||||
def board_features_quack(board, player):
|
||||
board = list(board)
|
||||
board += ([1, 0] if np.sign(player) > 0 else [0, 1])
|
||||
return np.array(board).reshape(1, -1)
|
||||
|
||||
# quack-fat
|
||||
@staticmethod
|
||||
def board_features_quack_fat(board, player):
|
||||
board = list(board)
|
||||
positives = [x if x > 0 else 0 for x in board]
|
||||
negatives = [x if x < 0 else 0 for x in board]
|
||||
board.append( 15 - sum(positives))
|
||||
board.append(-15 - sum(negatives))
|
||||
board += ([1, 0] if np.sign(player) > 0 else [0, 1])
|
||||
return np.array(board).reshape(1,-1)
|
||||
|
||||
|
||||
# tesauro
|
||||
@staticmethod
|
||||
def board_features_tesauro(board, cur_player):
|
||||
def ordinary_trans(val, player):
|
||||
abs_val = val * player
|
||||
if abs_val <= 0: return (0,0,0,0)
|
||||
elif abs_val == 1: return (1,0,0,0)
|
||||
elif abs_val == 2: return (1,1,0,0)
|
||||
elif abs_val == 3: return (1,1,1,0)
|
||||
else: return (1,1,1, (abs_val - 3) / 2)
|
||||
|
||||
def bar_trans(board, player):
|
||||
if player == 1: return (abs(board[0]/2),)
|
||||
elif player == -1: return (abs(board[25]/2),)
|
||||
|
||||
# def ordinary_trans_board(board, player):
|
||||
# return np.array(
|
||||
# [ordinary_trans(x, player) for x in board[1:25]]
|
||||
# ).flatten()
|
||||
|
||||
board_rep = []
|
||||
for player in [1,-1]:
|
||||
for x in board[1:25]:
|
||||
board_rep += ordinary_trans(x, player)
|
||||
board_rep += bar_trans(board, player)
|
||||
board_rep += (15 - Board.num_of_checkers_for_player(board, player),)
|
||||
|
||||
board_rep += ([1,0] if cur_player == 1 else [0,1])
|
||||
|
||||
return np.array(board_rep).reshape(1,198)
|
||||
|
||||
|
||||
@staticmethod
|
||||
|
@ -250,9 +298,9 @@ class Board:
|
|||
return """
|
||||
13 14 15 16 17 18 19 20 21 22 23 24
|
||||
+--------------------------------------------------------------------------+
|
||||
| {12}| {11}| {10}| {9}| {8}| {7}| bar -1: {0} | {6}| {5}| {4}| {3}| {2}| {1}| end -1: TODO|
|
||||
| {13}| {14}| {15}| {16}| {17}| {18}| bar -1: {25} | {19}| {20}| {21}| {22}| {23}| {24}| end -1: TODO|
|
||||
|---|---|---|---|---|---|------------|---|---|---|---|---|---| |
|
||||
| {13}| {14}| {15}| {16}| {17}| {18}| bar 1: {25} | {19}| {20}| {21}| {22}| {23}| {24}| end 1: TODO|
|
||||
| {12}| {11}| {10}| {9}| {8}| {7}| bar 1: {0} | {6}| {5}| {4}| {3}| {2}| {1}| end 1: TODO|
|
||||
+--------------------------------------------------------------------------+
|
||||
12 11 10 9 8 7 6 5 4 3 2 1
|
||||
""".format(*temp)
|
||||
|
|
1
dumbeval/.gitignore
vendored
Normal file
1
dumbeval/.gitignore
vendored
Normal file
|
@ -0,0 +1 @@
|
|||
build/
|
194
dumbeval/dumbeval.c
Normal file
194
dumbeval/dumbeval.c
Normal file
|
@ -0,0 +1,194 @@
|
|||
#include <Python.h>
|
||||
|
||||
static PyObject* DumbevalError;
|
||||
|
||||
static float x[122];
|
||||
|
||||
|
||||
/* With apologies to Gerry Tesauro */
|
||||
|
||||
/* Weights generated by weights.py */
|
||||
static const float wc[122] = {
|
||||
-1.91222, 1.45979, 0.40657, -1.39159, 3.64558, -0.45381, -0.03157,
|
||||
0.14539, 0.80232, 0.87558, 2.36202, -2.01887, -0.88918, 2.65871,
|
||||
-1.31587, 1.07476, 0.30491, -1.32892, 0.38018, -0.30714, -1.16178,
|
||||
0.71481, -1.01334, -0.44373, 0.51255, -0.17171, -0.88886, 0.02071,
|
||||
-0.53279, -0.22139, -1.02436, 0.17948, 0.95697, 0.49272, 0.31848,
|
||||
-0.58293, 0.14484, 0.22063, 1.0336 , -1.90554, 1.10291, -2.05589,
|
||||
-0.16964, -0.82442, 1.27217, -1.24968, -0.90372, 0.05546, 0.2535 ,
|
||||
-0.03533, -0.31773, 0.43704, 0.21699, 0.10519, 2.12775, -0.48196,
|
||||
-0.08445, -0.13156, -0.68362, 0.64765, 0.32537, 0.79493, 1.94577,
|
||||
-0.63827, 0.97057, -0.46039, 1.51801, -0.62955, -0.43632, 0.25876,
|
||||
-0.46623, -0.46963, 1.3532 , -0.07362, -1.53211, 0.69676, -0.92407,
|
||||
0.07153, 0.67173, 0.27661, -0.51579, -0.49019, 1.06603, -0.97673,
|
||||
-1.21231, -1.54966, -0.07795, 0.32697, 0.02873, 1.38703, 0.41725,
|
||||
0.78326, -0.7257 , 0.54165, 1.38882, 0.27304, 1.0739 , 0.74654,
|
||||
1.35561, 1.18697, 1.09146, 0.17552, -0.30773, 0.27812, -1.674 ,
|
||||
-0.31073, -0.40745, 0.51546, -1.10875, 2.0081 , -1.27931, -1.16321,
|
||||
0.95652, 0.7487 , -0.2347 , 0.20324, -0.41417, 0.05929, 0.72632,
|
||||
-1.15223, 1.2745 , -0.15947 };
|
||||
|
||||
static const float wr[122] = {
|
||||
0.13119, -0.13164, -1.2736 , 1.06352, -1.34749, -1.03086, -0.27417,
|
||||
-0.27762, 0.79454, -1.12623, 2.1134 , -0.7003 , 0.26056, -1.13518,
|
||||
-1.64548, -1.30828, -0.96589, -0.36258, -1.14323, -0.2006 , -1.00307,
|
||||
0.57739, -0.62693, 0.29721, -0.36996, -0.17462, 0.96704, 0.08902,
|
||||
1.4337 , -0.47107, 0.82156, 0.14988, 1.74034, 1.13313, -0.32083,
|
||||
-0.00048, -0.86622, 1.12808, 0.99875, 0.8049 , -0.16841, -0.42677,
|
||||
-1.9409 , -0.53565, -0.83708, 0.69603, 0.32079, 0.56942, 0.67965,
|
||||
1.49328, -1.65885, 0.96284, 0.63196, -0.27504, 0.39174, 0.71225,
|
||||
-0.3614 , 0.88761, 1.12882, 0.77764, 1.02618, -0.20245, -0.39245,
|
||||
-1.56799, 1.04888, -1.20858, -0.24361, -1.85157, -0.16912, 0.50512,
|
||||
-2.93122, 0.70477, -0.93066, 1.74867, 0.23963, -0.00699, -1.27183,
|
||||
-0.30604, 1.71039, 0.82202, -1.36734, -1.08352, -1.25054, 0.49436,
|
||||
-1.5037 , -0.73143, 0.74189, 0.32365, 0.30539, -0.72169, 0.41088,
|
||||
-1.56632, -0.63526, 0.58779, -0.05653, 0.76713, -1.40898, -0.33683,
|
||||
1.86802, 0.59773, 1.28668, -0.65817, 2.46829, -0.09331, 2.9034 ,
|
||||
1.04809, 0.73222, -0.44372, 0.53044, -1.9274 , -1.57183, -1.14068,
|
||||
1.26036, -0.9296 , 0.06662, -0.26572, -0.30862, 0.72915, 0.98977,
|
||||
0.63513, -1.43917, -0.12523 };
|
||||
|
||||
void setx(int pos[])
|
||||
{
|
||||
/* sets input vector x[] given board position pos[] */
|
||||
extern float x[];
|
||||
int j, jm1, n;
|
||||
/* initialize */
|
||||
for(j=0;j<122;++j) x[j] = 0.0;
|
||||
|
||||
/* first encode board locations 24-1 */
|
||||
for(j=1;j<=24;++j) {
|
||||
jm1 = j - 1;
|
||||
n = pos[25-j];
|
||||
if(n!=0) {
|
||||
if(n==-1) x[5*jm1+0] = 1.0;
|
||||
if(n==1) x[5*jm1+1] = 1.0;
|
||||
if(n>=2) x[5*jm1+2] = 1.0;
|
||||
if(n==3) x[5*jm1+3] = 1.0;
|
||||
if(n>=4) x[5*jm1+4] = (float)(n-3)/2.0;
|
||||
}
|
||||
}
|
||||
/* encode opponent barmen */
|
||||
x[120] = -(float)(pos[0])/2.0;
|
||||
/* encode computer's menoff */
|
||||
x[121] = (float)(pos[26])/15.0;
|
||||
}
|
||||
|
||||
float dumbeval(int race, int pos[])
|
||||
{
|
||||
/* Backgammon move-selection evaluation function
|
||||
for benchmark comparisons. Computes a linear
|
||||
evaluation function: Score = W * X, where X is
|
||||
an input vector encoding the board state (using
|
||||
a raw encoding of the number of men at each location),
|
||||
and W is a weight vector. Separate weight vectors
|
||||
are used for racing positions and contact positions.
|
||||
Makes lots of obvious mistakes, but provides a
|
||||
decent level of play for benchmarking purposes. */
|
||||
|
||||
/* Provided as a public service to the backgammon
|
||||
programming community by Gerry Tesauro, IBM Research.
|
||||
(e-mail: tesauro@watson.ibm.com) */
|
||||
|
||||
/* The following inputs are needed for this routine:
|
||||
|
||||
race is an integer variable which should be set
|
||||
based on the INITIAL position BEFORE the move.
|
||||
Set race=1 if the position is a race (i.e. no contact)
|
||||
and 0 if the position is a contact position.
|
||||
|
||||
pos[] is an integer array of dimension 28 which
|
||||
should represent a legal final board state after
|
||||
the move. Elements 1-24 correspond to board locations
|
||||
1-24 from computer's point of view, i.e. computer's
|
||||
men move in the negative direction from 24 to 1, and
|
||||
opponent's men move in the positive direction from
|
||||
1 to 24. Computer's men are represented by positive
|
||||
integers, and opponent's men are represented by negative
|
||||
integers. Element 25 represents computer's men on the
|
||||
bar (positive integer), and element 0 represents opponent's
|
||||
men on the bar (negative integer). Element 26 represents
|
||||
computer's men off the board (positive integer), and
|
||||
element 27 represents opponent's men off the board
|
||||
(negative integer). */
|
||||
|
||||
/* Also, be sure to call rdwts() at the start of your
|
||||
program to read in the weight values. Happy hacking] */
|
||||
|
||||
int i;
|
||||
float score;
|
||||
|
||||
if(pos[26]==15) return(99999999.);
|
||||
/* all men off, best possible move */
|
||||
|
||||
setx(pos); /* sets input array x[] */
|
||||
score = 0.0;
|
||||
if(race) { /* use race weights */
|
||||
for(i=0;i<122;++i) score += wr[i]*x[i];
|
||||
}
|
||||
else { /* use contact weights */
|
||||
for(i=0;i<122;++i) score += wc[i]*x[i];
|
||||
}
|
||||
return(score);
|
||||
}
|
||||
|
||||
static PyObject*
|
||||
dumbeval_eval(PyObject *self, PyObject *args) {
|
||||
int race;
|
||||
long numValues;
|
||||
int board[28];
|
||||
float eval_score;
|
||||
|
||||
PyObject* tuple_obj;
|
||||
PyObject* val_obj;
|
||||
|
||||
if (! PyArg_ParseTuple(args, "pO!", &race, &PyTuple_Type, &tuple_obj))
|
||||
return NULL;
|
||||
|
||||
numValues = PyTuple_Size(tuple_obj);
|
||||
|
||||
if (numValues < 0) return NULL;
|
||||
if (numValues != 28) {
|
||||
PyErr_SetString(DumbevalError, "Tuple must have 28 entries");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// Iterate over tuple to retreive positions
|
||||
for (int i=0; i<numValues; i++) {
|
||||
val_obj = PyTuple_GetItem(tuple_obj, i);
|
||||
board[i] = PyLong_AsLong(val_obj);
|
||||
}
|
||||
|
||||
eval_score = dumbeval(race, board);
|
||||
return Py_BuildValue("f", eval_score);
|
||||
}
|
||||
|
||||
static PyMethodDef dumbeval_methods[] = {
|
||||
{
|
||||
"eval", dumbeval_eval, METH_VARARGS,
|
||||
"Returns evaluation results for the given board position."
|
||||
},
|
||||
{NULL, NULL, 0, NULL}
|
||||
};
|
||||
|
||||
static struct PyModuleDef dumbeval_definition = {
|
||||
PyModuleDef_HEAD_INIT,
|
||||
"dumbeval",
|
||||
"A Python module that implements Gerald Tesauro's pubeval function for evaluation backgammon positions with badly initialized weights.",
|
||||
-1,
|
||||
dumbeval_methods
|
||||
};
|
||||
|
||||
PyMODINIT_FUNC PyInit_dumbeval(void) {
|
||||
PyObject* module;
|
||||
|
||||
module = PyModule_Create(&dumbeval_definition);
|
||||
if (module == NULL)
|
||||
return NULL;
|
||||
|
||||
DumbevalError = PyErr_NewException("dumbeval.error", NULL, NULL);
|
||||
Py_INCREF(DumbevalError);
|
||||
PyModule_AddObject(module, "error", DumbevalError);
|
||||
|
||||
return module;
|
||||
}
|
9
dumbeval/setup.py
Normal file
9
dumbeval/setup.py
Normal file
|
@ -0,0 +1,9 @@
|
|||
from distutils.core import setup, Extension
|
||||
|
||||
dumbeval = Extension('dumbeval',
|
||||
sources = ['dumbeval.c'])
|
||||
|
||||
setup (name = 'dumbeval',
|
||||
version = '0.1',
|
||||
description = 'Dumbeval for Python',
|
||||
ext_modules = [dumbeval])
|
14
dumbeval/weights.py
Normal file
14
dumbeval/weights.py
Normal file
|
@ -0,0 +1,14 @@
|
|||
#!/usr/bin/env python3
|
||||
import numpy as np
|
||||
import re
|
||||
|
||||
re.DOTALL = True
|
||||
|
||||
np.set_printoptions(precision=5, suppress=True, threshold=np.nan)
|
||||
def random_array_string():
|
||||
return re.sub(r'^\[(.*)\]$(?s)', r'{\n\1 };', np.array2string(np.random.normal(0,1,122), separator=', '))
|
||||
|
||||
print("/* Weights generated by weights.py */")
|
||||
print("static const float wc[122] =", random_array_string())
|
||||
print()
|
||||
print("static const float wr[122] =", random_array_string())
|
13
eval.py
13
eval.py
|
@ -2,6 +2,7 @@ from board import Board
|
|||
|
||||
import numpy as np
|
||||
import pubeval
|
||||
import dumbeval
|
||||
|
||||
|
||||
class Eval:
|
||||
|
@ -24,4 +25,16 @@ class Eval:
|
|||
|
||||
return best_move_pair
|
||||
|
||||
@staticmethod
|
||||
def make_dumbeval_move(board, sym, roll):
|
||||
legal_moves = Board.calculate_legal_states(board, sym, roll)
|
||||
moves_and_scores = [ ( board,
|
||||
dumbeval.eval(False, Board.board_features_to_pubeval(board, sym)))
|
||||
for board
|
||||
in legal_moves ]
|
||||
scores = [ x[1] for x in moves_and_scores ]
|
||||
best_move_pair = moves_and_scores[np.array(scores).argmax()]
|
||||
|
||||
return best_move_pair
|
||||
|
||||
|
||||
|
|
5
game.py
5
game.py
|
@ -23,18 +23,21 @@ class Game:
|
|||
|
||||
def roll(self):
|
||||
return self.cup.roll()
|
||||
|
||||
'''
|
||||
def best_move_and_score(self):
|
||||
roll = self.roll()
|
||||
move_and_val = self.p1.make_move(self.board, self.p1.get_sym(), roll)
|
||||
self.board = move_and_val[0]
|
||||
return move_and_val
|
||||
'''
|
||||
|
||||
'''
|
||||
def next_round(self):
|
||||
roll = self.roll()
|
||||
#print(roll)
|
||||
self.board = Board.flip(self.p2.make_move(Board.flip(self.board), self.p2.get_sym(), roll)[0])
|
||||
return self.board
|
||||
'''
|
||||
|
||||
def board_state(self):
|
||||
return self.board
|
||||
|
|
200
main.py
200
main.py
|
@ -3,38 +3,6 @@ import sys
|
|||
import os
|
||||
import time
|
||||
|
||||
model_storage_path = 'models'
|
||||
|
||||
# Create models folder
|
||||
if not os.path.exists(model_storage_path):
|
||||
os.makedirs(model_storage_path)
|
||||
|
||||
# Define helper functions
|
||||
def log_train_outcome(outcome, trained_eps = 0):
|
||||
format_vars = { 'trained_eps': trained_eps,
|
||||
'count': len(train_outcome),
|
||||
'sum': sum(train_outcome),
|
||||
'mean': sum(train_outcome) / len(train_outcome),
|
||||
'time': int(time.time())
|
||||
}
|
||||
with open(os.path.join(config['model_path'], 'logs', "train.log"), 'a+') as f:
|
||||
f.write("{time};{trained_eps};{count};{sum};{mean}".format(**format_vars) + "\n")
|
||||
|
||||
|
||||
def log_eval_outcomes(outcomes, trained_eps = 0):
|
||||
for outcome in outcomes:
|
||||
scores = outcome[1]
|
||||
format_vars = { 'trained_eps': trained_eps,
|
||||
'method': outcome[0],
|
||||
'count': len(scores),
|
||||
'sum': sum(scores),
|
||||
'mean': sum(scores) / len(scores),
|
||||
'time': int(time.time())
|
||||
}
|
||||
with open(os.path.join(config['model_path'], 'logs', "eval.log"), 'a+') as f:
|
||||
f.write("{time};{method};{trained_eps};{count};{sum};{mean}".format(**format_vars) + "\n")
|
||||
|
||||
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description="Backgammon games")
|
||||
parser.add_argument('--episodes', action='store', dest='episode_count',
|
||||
|
@ -47,13 +15,15 @@ parser.add_argument('--eval-methods', action='store',
|
|||
default=['random'], nargs='*',
|
||||
help='specifies evaluation methods')
|
||||
parser.add_argument('--eval', action='store_true',
|
||||
help='whether to evaluate the neural network with a random choice bot')
|
||||
help='evaluate the neural network with a random choice bot')
|
||||
parser.add_argument('--bench-eval-scores', action='store_true',
|
||||
help='benchmark scores of evaluation measures. episode counts and model specified as options are ignored.')
|
||||
parser.add_argument('--train', action='store_true',
|
||||
help='whether to train the neural network')
|
||||
help='train the neural network')
|
||||
parser.add_argument('--eval-after-train', action='store_true', dest='eval_after_train',
|
||||
help='whether to evaluate after each training session')
|
||||
help='evaluate after each training session')
|
||||
parser.add_argument('--play', action='store_true',
|
||||
help='whether to play with the neural network')
|
||||
help='play with the neural network')
|
||||
parser.add_argument('--start-episode', action='store', dest='start_episode',
|
||||
type=int, default=0,
|
||||
help='episode count to start at; purely for display purposes')
|
||||
|
@ -66,27 +36,74 @@ args = parser.parse_args()
|
|||
|
||||
config = {
|
||||
'model': args.model,
|
||||
'model_path': os.path.join(model_storage_path, args.model),
|
||||
'episode_count': args.episode_count,
|
||||
'eval_methods': args.eval_methods,
|
||||
'train': args.train,
|
||||
'play': args.play,
|
||||
'eval': args.eval,
|
||||
'bench_eval_scores': args.bench_eval_scores,
|
||||
'eval_after_train': args.eval_after_train,
|
||||
'start_episode': args.start_episode,
|
||||
'train_perpetually': args.train_perpetually,
|
||||
'model_storage_path': model_storage_path
|
||||
'model_storage_path': 'models',
|
||||
'bench_storage_path': 'bench',
|
||||
'board_representation': 'quack'
|
||||
}
|
||||
|
||||
# Create models folder
|
||||
if not os.path.exists(config['model_storage_path']):
|
||||
os.makedirs(config['model_storage_path'])
|
||||
|
||||
model_path = lambda: os.path.join(config['model_storage_path'], config['model'])
|
||||
|
||||
# Make sure directories exist
|
||||
model_path = os.path.join(config['model_path'])
|
||||
log_path = os.path.join(model_path, 'logs')
|
||||
if not os.path.isdir(model_path):
|
||||
os.mkdir(model_path)
|
||||
log_path = os.path.join(model_path(), 'logs')
|
||||
if not os.path.isdir(model_path()):
|
||||
os.mkdir(model_path())
|
||||
if not os.path.isdir(log_path):
|
||||
os.mkdir(log_path)
|
||||
|
||||
|
||||
|
||||
# Define helper functions
|
||||
def log_train_outcome(outcome, trained_eps = 0, log_path = os.path.join(model_path(), 'logs', "train.log")):
|
||||
format_vars = { 'trained_eps': trained_eps,
|
||||
'count': len(train_outcome),
|
||||
'sum': sum(train_outcome),
|
||||
'mean': sum(train_outcome) / len(train_outcome),
|
||||
'time': int(time.time())
|
||||
}
|
||||
with open(log_path, 'a+') as f:
|
||||
f.write("{time};{trained_eps};{count};{sum};{mean}".format(**format_vars) + "\n")
|
||||
|
||||
|
||||
def log_eval_outcomes(outcomes, trained_eps = 0, log_path = os.path.join(model_path(), 'logs', "eval.log")):
|
||||
for outcome in outcomes:
|
||||
scores = outcome[1]
|
||||
format_vars = { 'trained_eps': trained_eps,
|
||||
'method': outcome[0],
|
||||
'count': len(scores),
|
||||
'sum': sum(scores),
|
||||
'mean': sum(scores) / len(scores),
|
||||
'time': int(time.time())
|
||||
}
|
||||
with open(log_path, 'a+') as f:
|
||||
f.write("{time};{method};{trained_eps};{count};{sum};{mean}".format(**format_vars) + "\n")
|
||||
|
||||
def log_bench_eval_outcomes(outcomes, log_path, index, time, trained_eps = 0):
|
||||
for outcome in outcomes:
|
||||
scores = outcome[1]
|
||||
format_vars = { 'trained_eps': trained_eps,
|
||||
'method': outcome[0],
|
||||
'count': len(scores),
|
||||
'sum': sum(scores),
|
||||
'mean': sum(scores) / len(scores),
|
||||
'time': time,
|
||||
'index': index,
|
||||
}
|
||||
with open(log_path, 'a+') as f:
|
||||
f.write("{method};{count};{index};{time};{sum};{mean}".format(**format_vars) + "\n")
|
||||
|
||||
# Do actions specified by command-line
|
||||
if args.list_models:
|
||||
def get_eps_trained(folder):
|
||||
|
@ -94,7 +111,7 @@ if args.list_models:
|
|||
return int(f.read())
|
||||
model_folders = [ f.path
|
||||
for f
|
||||
in os.scandir(model_storage_path)
|
||||
in os.scandir(config['model_storage_path'])
|
||||
if f.is_dir() ]
|
||||
models = [ (folder, get_eps_trained(folder)) for folder in model_folders ]
|
||||
sys.stderr.write("Found {} model(s)\n".format(len(models)))
|
||||
|
@ -102,29 +119,78 @@ if args.list_models:
|
|||
sys.stderr.write(" {name}: {eps_trained}\n".format(name = model[0], eps_trained = model[1]))
|
||||
|
||||
exit()
|
||||
|
||||
# Set up network
|
||||
from network import Network
|
||||
network = Network(config, config['model'])
|
||||
eps = config['start_episode']
|
||||
|
||||
# Set up variables
|
||||
episode_count = config['episode_count']
|
||||
if __name__ == "__main__":
|
||||
# Set up network
|
||||
from network import Network
|
||||
|
||||
# Set up variables
|
||||
episode_count = config['episode_count']
|
||||
|
||||
if args.train:
|
||||
while True:
|
||||
train_outcome = network.train_model(episodes = episode_count, trained_eps = eps)
|
||||
eps += episode_count
|
||||
log_train_outcome(train_outcome, trained_eps = eps)
|
||||
if config['eval_after_train']:
|
||||
eval_outcomes = network.eval(trained_eps = eps)
|
||||
log_eval_outcomes(eval_outcomes, trained_eps = eps)
|
||||
if not config['train_perpetually']:
|
||||
break
|
||||
elif args.eval:
|
||||
eps = config['start_episode']
|
||||
outcomes = network.eval()
|
||||
log_eval_outcomes(outcomes, trained_eps = eps)
|
||||
#elif args.play:
|
||||
# g.play(episodes = episode_count)
|
||||
|
||||
if args.train:
|
||||
network = Network(config, config['model'])
|
||||
start_episode = network.episodes_trained
|
||||
while True:
|
||||
train_outcome = network.train_model(episodes = episode_count, trained_eps = start_episode)
|
||||
start_episode += episode_count
|
||||
log_train_outcome(train_outcome, trained_eps = start_episode)
|
||||
if config['eval_after_train']:
|
||||
eval_outcomes = network.eval(trained_eps = start_episode)
|
||||
log_eval_outcomes(eval_outcomes, trained_eps = start_episode)
|
||||
if not config['train_perpetually']:
|
||||
break
|
||||
|
||||
|
||||
elif args.eval:
|
||||
network = Network(config, config['model'])
|
||||
start_episode = network.episodes_trained
|
||||
# Evaluation measures are described in `config`
|
||||
outcomes = network.eval(config['episode_count'])
|
||||
log_eval_outcomes(outcomes, trained_eps = start_episode)
|
||||
# elif args.play:
|
||||
# g.play(episodes = episode_count)
|
||||
|
||||
|
||||
elif args.bench_eval_scores:
|
||||
# Make sure benchmark directory exists
|
||||
if not os.path.isdir(config['bench_storage_path']):
|
||||
os.mkdir(config['bench_storage_path'])
|
||||
|
||||
config = config.copy()
|
||||
config['model'] = 'bench'
|
||||
|
||||
network = Network(config, config['model'])
|
||||
start_episode = network.episodes_trained
|
||||
|
||||
if start_episode == 0:
|
||||
print("Model not trained! Beware of using non-existing models!")
|
||||
exit()
|
||||
|
||||
sample_count = 20
|
||||
episode_counts = [25, 50, 100, 250, 500, 1000, 2500, 5000,
|
||||
10000, 20000]
|
||||
|
||||
def do_eval(sess):
|
||||
for eval_method in config['eval_methods']:
|
||||
result_path = os.path.join(config['bench_storage_path'],
|
||||
eval_method) + "-{}.log".format(int(time.time()))
|
||||
for n in episode_counts:
|
||||
for i in range(sample_count):
|
||||
start_time = time.time()
|
||||
# Evaluation measure to be benchmarked are described in `config`
|
||||
outcomes = network.eval(episode_count = n,
|
||||
tf_session = sess)
|
||||
time_diff = time.time() - start_time
|
||||
log_bench_eval_outcomes(outcomes,
|
||||
time = time_diff,
|
||||
index = i,
|
||||
trained_eps = start_episode,
|
||||
log_path = result_path)
|
||||
|
||||
# CMM: oh no
|
||||
import tensorflow as tf
|
||||
with tf.Session() as session:
|
||||
network.restore_model(session)
|
||||
do_eval(session)
|
||||
|
||||
|
||||
|
|
536
network.py
536
network.py
|
@ -8,72 +8,90 @@ import sys
|
|||
import random
|
||||
from eval import Eval
|
||||
|
||||
class Network:
|
||||
hidden_size = 40
|
||||
input_size = 26
|
||||
output_size = 1
|
||||
# Can't remember the best learning_rate, look this up
|
||||
learning_rate = 0.1
|
||||
|
||||
# TODO: Actually compile tensorflow properly
|
||||
#os.environ["TF_CPP_MIN_LOG_LEVEL"]="2"
|
||||
class Network:
|
||||
# board_features_quack has size 28
|
||||
# board_features_quack_fat has size 30
|
||||
# board_features_tesauro has size 198
|
||||
|
||||
board_reps = {
|
||||
'quack-fat' : (30, Board.board_features_quack_fat),
|
||||
'quack' : (28, Board.board_features_quack),
|
||||
'tesauro' : (198, Board.board_features_tesauro)
|
||||
}
|
||||
|
||||
def custom_tanh(self, x, name=None):
|
||||
return tf.scalar_mul(tf.constant(2.00), tf.tanh(x, name))
|
||||
|
||||
|
||||
def __init__(self, config, name):
|
||||
self.config = config
|
||||
self.session = tf.Session()
|
||||
self.checkpoint_path = config['model_path']
|
||||
self.checkpoint_path = os.path.join(config['model_storage_path'], config['model'])
|
||||
|
||||
self.name = name
|
||||
|
||||
# Set board representation from config
|
||||
self.input_size, self.board_trans_func = Network.board_reps[
|
||||
self.config['board_representation']
|
||||
]
|
||||
self.output_size = 1
|
||||
self.hidden_size = 40
|
||||
# Can't remember the best learning_rate, look this up
|
||||
self.learning_rate = 0.01
|
||||
|
||||
# Restore trained episode count for model
|
||||
episode_count_path = os.path.join(self.checkpoint_path, "episodes_trained")
|
||||
if os.path.isfile(episode_count_path):
|
||||
with open(episode_count_path, 'r') as f:
|
||||
self.episodes_trained = int(f.read())
|
||||
else:
|
||||
self.episodes_trained = 0
|
||||
|
||||
# input = x
|
||||
self.x = tf.placeholder('float', [1, Network.input_size], name='x')
|
||||
self.value_next = tf.placeholder('float', [1, Network.output_size], name="value_next")
|
||||
self.x = tf.placeholder('float', [1, self.input_size], name='input')
|
||||
self.value_next = tf.placeholder('float', [1, self.output_size], name="value_next")
|
||||
|
||||
xavier_init = tf.contrib.layers.xavier_initializer()
|
||||
|
||||
W_1 = tf.get_variable("w_1", (Network.input_size, Network.hidden_size),
|
||||
|
||||
W_1 = tf.get_variable("w_1", (self.input_size, self.hidden_size),
|
||||
initializer=xavier_init)
|
||||
W_2 = tf.get_variable("w_2", (Network.hidden_size, Network.output_size),
|
||||
W_2 = tf.get_variable("w_2", (self.hidden_size, self.output_size),
|
||||
initializer=xavier_init)
|
||||
|
||||
b_1 = tf.get_variable("b_1", (Network.hidden_size,),
|
||||
b_1 = tf.get_variable("b_1", (self.hidden_size,),
|
||||
initializer=tf.zeros_initializer)
|
||||
b_2 = tf.get_variable("b_2", (Network.output_size,),
|
||||
b_2 = tf.get_variable("b_2", (self.output_size,),
|
||||
initializer=tf.zeros_initializer)
|
||||
|
||||
value_after_input = self.custom_tanh(tf.matmul(self.x, W_1) + b_1, name='hidden_layer')
|
||||
|
||||
self.value = self.custom_tanh(tf.matmul(value_after_input, W_2) + b_2, name='output_layer')
|
||||
value_after_input = tf.sigmoid(tf.matmul(self.x, W_1) + b_1, name='hidden_layer')
|
||||
|
||||
self.value = tf.sigmoid(tf.matmul(value_after_input, W_2) + b_2, name='output_layer')
|
||||
|
||||
# tf.reduce_sum basically finds the sum of its input, so this gives the
|
||||
# difference between the two values, in case they should be lists, which
|
||||
# they might be if our input changes
|
||||
|
||||
# TODO: Alexander thinks that self.value will be computed twice (instead of once)
|
||||
difference_in_values = tf.reduce_sum(self.value_next - self.value, name='difference')
|
||||
|
||||
difference_in_values = tf.reshape(tf.subtract(self.value_next, self.value, name='difference_in_values'), [])
|
||||
tf.summary.scalar("difference_in_values", tf.abs(difference_in_values))
|
||||
|
||||
trainable_vars = tf.trainable_variables()
|
||||
gradients = tf.gradients(self.value, trainable_vars)
|
||||
|
||||
apply_gradients = []
|
||||
|
||||
|
||||
with tf.variable_scope('apply_gradients'):
|
||||
for gradient, trainable_var in zip(gradients, trainable_vars):
|
||||
# Hopefully this is Δw_t = α(V_t+1 - V_t)▿_wV_t.
|
||||
backprop_calc = Network.learning_rate * difference_in_values * gradient
|
||||
backprop_calc = self.learning_rate * difference_in_values * gradient
|
||||
grad_apply = trainable_var.assign_add(backprop_calc)
|
||||
apply_gradients.append(grad_apply)
|
||||
|
||||
self.training_op = tf.group(*apply_gradients, name='training_op')
|
||||
|
||||
self.saver = tf.train.Saver(max_to_keep=1)
|
||||
self.session.run(tf.global_variables_initializer())
|
||||
|
||||
self.restore_model()
|
||||
|
||||
def eval_state(self, state):
|
||||
self.training_op = tf.group(*apply_gradients, name='training_op')
|
||||
|
||||
self.saver = tf.train.Saver(max_to_keep=1)
|
||||
|
||||
def eval_state(self, sess, state):
|
||||
# Run state through a network
|
||||
|
||||
# Remember to create placeholders for everything because wtf tensorflow
|
||||
|
@ -105,27 +123,26 @@ class Network:
|
|||
# implement learning_rate * (difference_in_values) * gradients (the
|
||||
# before-mentioned calculation.
|
||||
|
||||
|
||||
# print("Network is evaluating")
|
||||
val = self.session.run(self.value, feed_dict={self.x: state})
|
||||
#print("eval ({})".format(self.name), state, val, sep="\n")
|
||||
return val
|
||||
# print("eval ({})".format(self.name), state, val, sep="\n")
|
||||
|
||||
def save_model(self, episode_count):
|
||||
self.saver.save(self.session, os.path.join(self.checkpoint_path, 'model.ckpt'))
|
||||
return sess.run(self.value, feed_dict={self.x: state})
|
||||
|
||||
def save_model(self, sess, episode_count):
|
||||
self.saver.save(sess, os.path.join(self.checkpoint_path, 'model.ckpt'))
|
||||
with open(os.path.join(self.checkpoint_path, "episodes_trained"), 'w+') as f:
|
||||
print("[NETWK] ({name}) Saving model to:".format(name = self.name),
|
||||
print("[NETWK] ({name}) Saving model to:".format(name=self.name),
|
||||
os.path.join(self.checkpoint_path, 'model.ckpt'))
|
||||
f.write(str(episode_count) + "\n")
|
||||
|
||||
def restore_model(self):
|
||||
|
||||
def restore_model(self, sess):
|
||||
if os.path.isfile(os.path.join(self.checkpoint_path, 'model.ckpt.index')):
|
||||
latest_checkpoint = tf.train.latest_checkpoint(self.checkpoint_path)
|
||||
print("[NETWK] ({name}) Restoring model from:".format(name = self.name),
|
||||
print("[NETWK] ({name}) Restoring model from:".format(name=self.name),
|
||||
str(latest_checkpoint))
|
||||
self.saver.restore(self.session, latest_checkpoint)
|
||||
self.saver.restore(sess, latest_checkpoint)
|
||||
variables_names = [v.name for v in tf.trainable_variables()]
|
||||
values = self.session.run(variables_names)
|
||||
values = sess.run(variables_names)
|
||||
for k, v in zip(variables_names, values):
|
||||
print("Variable: ", k)
|
||||
print("Shape: ", v.shape)
|
||||
|
@ -137,101 +154,268 @@ class Network:
|
|||
with open(episode_count_path, 'r') as f:
|
||||
self.config['start_episode'] = int(f.read())
|
||||
|
||||
# Have a circular dependency, #fuck, need to rewrite something
|
||||
def adjust_weights(self, board, v_next):
|
||||
# print("lol")
|
||||
board = np.array(board).reshape((1,26))
|
||||
self.session.run(self.training_op, feed_dict = { self.x: board,
|
||||
self.value_next: v_next })
|
||||
|
||||
|
||||
# while game isn't done:
|
||||
#x_next = g.next_move()
|
||||
#value_next = network.eval_state(x_next)
|
||||
#self.session.run(self.training_op, feed_dict={self.x: x, self.value_next: value_next})
|
||||
#x = x_next
|
||||
|
||||
|
||||
|
||||
def make_move(self, board, roll):
|
||||
def make_move(self, sess, board, roll, player):
|
||||
# print(Board.pretty(board))
|
||||
legal_moves = Board.calculate_legal_states(board, 1, roll)
|
||||
moves_and_scores = [ (move, self.eval_state(np.array(move).reshape(1,26))) for move in legal_moves ]
|
||||
scores = [ x[1] for x in moves_and_scores ]
|
||||
legal_moves = Board.calculate_legal_states(board, player, roll)
|
||||
moves_and_scores = [(move, self.eval_state(sess, self.board_trans_func(move, player))) for move in legal_moves]
|
||||
scores = [x[1] if np.sign(player) > 0 else 1-x[1] for x in moves_and_scores]
|
||||
best_score_index = np.array(scores).argmax()
|
||||
best_move_pair = moves_and_scores[best_score_index]
|
||||
#print("Found the best state, being:", np.array(move_scores).argmax())
|
||||
# print("Found the best state, being:", np.array(move_scores).argmax())
|
||||
return best_move_pair
|
||||
|
||||
|
||||
def train_model(self, episodes=1000, save_step_size = 100, trained_eps = 0):
|
||||
start_time = time.time()
|
||||
|
||||
def print_time_estimate(eps_completed):
|
||||
cur_time = time.time()
|
||||
time_diff = cur_time - start_time
|
||||
eps_per_sec = eps_completed / time_diff
|
||||
secs_per_ep = time_diff / eps_completed
|
||||
eps_remaining = (episodes - eps_completed)
|
||||
sys.stderr.write("[TRAIN] Averaging {per_sec} episodes per second\n".format(per_sec = round(eps_per_sec, 2)))
|
||||
sys.stderr.write("[TRAIN] {eps_remaining} episodes remaining; approx. {time_remaining} seconds remaining\n".format(eps_remaining = eps_remaining, time_remaining = int(eps_remaining * secs_per_ep)))
|
||||
def eval(self, episode_count, trained_eps = 0, tf_session = None):
|
||||
def do_eval(sess, method, episodes = 1000, trained_eps = 0):
|
||||
start_time = time.time()
|
||||
|
||||
|
||||
sys.stderr.write("[TRAIN] Training {} episodes and save_step_size {}\n".format(episodes, save_step_size))
|
||||
outcomes = []
|
||||
for episode in range(1, episodes + 1):
|
||||
sys.stderr.write("[TRAIN] Episode {}".format(episode + trained_eps))
|
||||
# TODO decide which player should be here
|
||||
player = 1
|
||||
|
||||
roll = (random.randrange(1,7), random.randrange(1,7))
|
||||
prev_board, _ = self.make_move(Board.flip(Board.initial_state) if player == -1 else Board.initial_state, roll)
|
||||
if player == -1:
|
||||
prev_board = Board.flip(prev_board)
|
||||
|
||||
# find the best move here, make this move, then change turn as the
|
||||
# first thing inside of the while loop and then call
|
||||
# best_move_and_score to get V_t+1
|
||||
def print_time_estimate(eps_completed):
|
||||
cur_time = time.time()
|
||||
time_diff = cur_time - start_time
|
||||
eps_per_sec = eps_completed / time_diff
|
||||
secs_per_ep = time_diff / eps_completed
|
||||
eps_remaining = (episodes - eps_completed)
|
||||
sys.stderr.write(
|
||||
"[EVAL ] Averaging {per_sec} episodes per second\n".format(per_sec=round(eps_per_sec, 2)))
|
||||
sys.stderr.write(
|
||||
"[EVAL ] {eps_remaining} episodes remaining; approx. {time_remaining} seconds remaining\n".format(
|
||||
eps_remaining=eps_remaining, time_remaining=int(eps_remaining * secs_per_ep)))
|
||||
|
||||
# i = 0
|
||||
while Board.outcome(prev_board) is None:
|
||||
# print("-"*30)
|
||||
# print(i)
|
||||
# print(roll)
|
||||
# print(Board.pretty(prev_board))
|
||||
# print("/"*30)
|
||||
# i += 1
|
||||
|
||||
player *= -1
|
||||
sys.stderr.write(
|
||||
"[EVAL ] Evaluating {eps} episode(s) with method '{method}'\n".format(eps=episodes, method=method))
|
||||
|
||||
if method == 'random':
|
||||
outcomes = []
|
||||
"""for i in range(1, episodes + 1):
|
||||
sys.stderr.write("[EVAL ] Episode {}".format(i))
|
||||
board = Board.initial_state
|
||||
while Board.outcome(board) is None:
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
board = (self.p1.make_move(sess, board, self.p1.get_sym(), roll))[0]
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
board = Board.flip(Eval.make_random_move(Board.flip(board), 1, roll))
|
||||
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
|
||||
outcomes.append(Board.outcome(board)[1])
|
||||
sys.stderr.write("\n")
|
||||
|
||||
if i % 50 == 0:
|
||||
print_time_estimate(i)"""
|
||||
return outcomes
|
||||
elif method == 'pubeval':
|
||||
outcomes = []
|
||||
# Add the evaluation code for pubeval, the bot has a method make_pubeval_move(board, sym, roll),
|
||||
# which can be used to get the best move according to pubeval
|
||||
for i in range(1, episodes + 1):
|
||||
sys.stderr.write("[EVAL ] Episode {}".format(i))
|
||||
board = Board.initial_state
|
||||
# print("init:", board, sep="\n")
|
||||
while Board.outcome(board) is None:
|
||||
# print("-"*30)
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
# print(roll)
|
||||
|
||||
# prev_board = tuple(board)
|
||||
board = (self.make_move(sess, board, roll, 1))[0]
|
||||
# print("post p1:", board, sep="\n")
|
||||
|
||||
# print("."*30)
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
# print(roll)
|
||||
|
||||
# prev_board = tuple(board)
|
||||
board = Eval.make_pubeval_move(board, -1, roll)[0][0:26]
|
||||
# print("post pubeval:", board, sep="\n")
|
||||
|
||||
# print("*"*30)
|
||||
# print(board)
|
||||
# print("+"*30)
|
||||
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
|
||||
outcomes.append(Board.outcome(board)[1])
|
||||
sys.stderr.write("\n")
|
||||
|
||||
if i % 10 == 0:
|
||||
print_time_estimate(i)
|
||||
|
||||
return outcomes
|
||||
|
||||
elif method == 'dumbeval':
|
||||
outcomes = []
|
||||
# Add the evaluation code for pubeval, the bot has a method make_pubeval_move(board, sym, roll),
|
||||
# which can be used to get the best move according to pubeval
|
||||
for i in range(1, episodes + 1):
|
||||
sys.stderr.write("[EVAL ] Episode {}".format(i))
|
||||
board = Board.initial_state
|
||||
# print("init:", board, sep="\n")
|
||||
while Board.outcome(board) is None:
|
||||
# print("-"*30)
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
# print(roll)
|
||||
|
||||
# prev_board = tuple(board)
|
||||
board = (self.make_move(sess, board, roll, 1))[0]
|
||||
# print("post p1:", board, sep="\n")
|
||||
|
||||
# print("."*30)
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
# print(roll)
|
||||
|
||||
# prev_board = tuple(board)
|
||||
board = Eval.make_dumbeval_move(board, -1, roll)[0][0:26]
|
||||
# print("post pubeval:", board, sep="\n")
|
||||
|
||||
# print("*"*30)
|
||||
# print(board)
|
||||
# print("+"*30)
|
||||
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
|
||||
outcomes.append(Board.outcome(board)[1])
|
||||
sys.stderr.write("\n")
|
||||
|
||||
if i % 10 == 0:
|
||||
print_time_estimate(i)
|
||||
|
||||
return outcomes
|
||||
|
||||
elif method == 'dumbmodel':
|
||||
outcomes = []
|
||||
"""
|
||||
config_prime = self.config.copy()
|
||||
config_prime['model_path'] = os.path.join(config_prime['model_storage_path'], 'dumbmodel')
|
||||
eval_bot = Bot(1, config = config_prime, name = "dumbmodel")
|
||||
#print(self.config, "\n", config_prime)
|
||||
outcomes = []
|
||||
for i in range(1, episodes + 1):
|
||||
sys.stderr.write("[EVAL ] Episode {}".format(i))
|
||||
board = Board.initial_state
|
||||
while Board.outcome(board) is None:
|
||||
roll = (random.randrange(1,7), random.randrange(1,7))
|
||||
board = (self.make_move(board, self.p1.get_sym(), roll))[0]
|
||||
|
||||
cur_board, cur_board_value = self.make_move(Board.flip(prev_board) if player == -1 else prev_board, roll)
|
||||
if player == -1:
|
||||
cur_board = Board.flip(cur_board)
|
||||
roll = (random.randrange(1,7), random.randrange(1,7))
|
||||
board = Board.flip(eval_bot.make_move(Board.flip(board), self.p1.get_sym(), roll)[0])
|
||||
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
|
||||
outcomes.append(Board.outcome(board)[1])
|
||||
sys.stderr.write("\n")
|
||||
|
||||
self.adjust_weights(prev_board, cur_board_value)
|
||||
|
||||
prev_board = cur_board
|
||||
|
||||
final_board = prev_board
|
||||
sys.stderr.write("\t outcome {}".format(Board.outcome(final_board)[1]))
|
||||
outcomes.append(Board.outcome(final_board)[1])
|
||||
final_score = np.array([ Board.outcome(final_board)[1] ])
|
||||
self.adjust_weights(prev_board, final_score.reshape((1, 1)))
|
||||
|
||||
sys.stderr.write("\n")
|
||||
if i % 50 == 0:
|
||||
print_time_estimate(i)
|
||||
"""
|
||||
return outcomes
|
||||
else:
|
||||
sys.stderr.write("[EVAL ] Evaluation method '{}' is not defined\n".format(method))
|
||||
return [0]
|
||||
|
||||
if episode % min(save_step_size, episodes) == 0:
|
||||
sys.stderr.write("[TRAIN] Saving model...\n")
|
||||
self.save_model(episode+trained_eps)
|
||||
if tf_session == None:
|
||||
with tf.Session() as session:
|
||||
session.run(tf.global_variables_initializer())
|
||||
self.restore_model(session)
|
||||
outcomes = [ (method, do_eval(session,
|
||||
method,
|
||||
episode_count,
|
||||
trained_eps = trained_eps))
|
||||
for method
|
||||
in self.config['eval_methods'] ]
|
||||
return outcomes
|
||||
else:
|
||||
outcomes = [ (method, do_eval(tf_session,
|
||||
method,
|
||||
episode_count,
|
||||
trained_eps = trained_eps))
|
||||
for method
|
||||
in self.config['eval_methods'] ]
|
||||
return outcomes
|
||||
|
||||
if episode % 50 == 0:
|
||||
print_time_estimate(episode)
|
||||
def train_model(self, episodes=1000, save_step_size=100, trained_eps=0):
|
||||
with tf.Session() as sess:
|
||||
writer = tf.summary.FileWriter("/tmp/log/tf", sess.graph)
|
||||
|
||||
sys.stderr.write("[TRAIN] Saving model for final episode...\n")
|
||||
self.save_model(episode+trained_eps)
|
||||
sess.run(tf.global_variables_initializer())
|
||||
self.restore_model(sess)
|
||||
|
||||
variables_names = [v.name for v in tf.trainable_variables()]
|
||||
values = sess.run(variables_names)
|
||||
for k, v in zip(variables_names, values):
|
||||
print("Variable: ", k)
|
||||
print("Shape: ", v.shape)
|
||||
print(v)
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
def print_time_estimate(eps_completed):
|
||||
cur_time = time.time()
|
||||
time_diff = cur_time - start_time
|
||||
eps_per_sec = eps_completed / time_diff
|
||||
secs_per_ep = time_diff / eps_completed
|
||||
eps_remaining = (episodes - eps_completed)
|
||||
sys.stderr.write(
|
||||
"[TRAIN] Averaging {per_sec} episodes per second\n".format(per_sec=round(eps_per_sec, 2)))
|
||||
sys.stderr.write(
|
||||
"[TRAIN] {eps_remaining} episodes remaining; approx. {time_remaining} seconds remaining\n".format(
|
||||
eps_remaining=eps_remaining, time_remaining=int(eps_remaining * secs_per_ep)))
|
||||
|
||||
sys.stderr.write("[TRAIN] Training {} episodes and save_step_size {}\n".format(episodes, save_step_size))
|
||||
outcomes = []
|
||||
for episode in range(1, episodes + 1):
|
||||
sys.stderr.write("[TRAIN] Episode {}".format(episode + trained_eps))
|
||||
# TODO decide which player should be here
|
||||
|
||||
player = 1
|
||||
|
||||
prev_board = Board.initial_state
|
||||
|
||||
# find the best move here, make this move, then change turn as the
|
||||
# first thing inside of the while loop and then call
|
||||
# best_move_and_score to get V_t+1
|
||||
|
||||
i = 0
|
||||
while Board.outcome(prev_board) is None:
|
||||
i += 1
|
||||
|
||||
#print("PREEEV_BOOOOAAARD:",prev_board)
|
||||
cur_board, cur_board_value = self.make_move(sess,
|
||||
prev_board,
|
||||
(random.randrange(1, 7), random.randrange(1, 7)), player)
|
||||
|
||||
#print("The current value:",cur_board_value)
|
||||
|
||||
# adjust weights
|
||||
sess.run(self.training_op,
|
||||
feed_dict={self.x: self.board_trans_func(prev_board, player),
|
||||
self.value_next: cur_board_value})
|
||||
|
||||
player *= -1
|
||||
|
||||
|
||||
prev_board = cur_board
|
||||
|
||||
final_board = prev_board
|
||||
sys.stderr.write("\t outcome {}\t turns {}".format(Board.outcome(final_board)[1], i))
|
||||
outcomes.append(Board.outcome(final_board)[1])
|
||||
final_score = np.array([Board.outcome(final_board)[1]])
|
||||
scaled_final_score = ((final_score + 2) / 4)
|
||||
#print("The difference in values:", scaled_final_score - cur_board_value)
|
||||
# print("scaled_final_score",scaled_final_score)
|
||||
|
||||
with tf.name_scope("final"):
|
||||
merged = tf.summary.merge_all()
|
||||
summary, _ = sess.run([merged, self.training_op],
|
||||
feed_dict={self.x: self.board_trans_func(prev_board, player),
|
||||
self.value_next: scaled_final_score.reshape((1, 1))})
|
||||
writer.add_summary(summary, episode + trained_eps)
|
||||
|
||||
sys.stderr.write("\n")
|
||||
|
||||
if episode % min(save_step_size, episodes) == 0:
|
||||
sys.stderr.write("[TRAIN] Saving model...\n")
|
||||
self.save_model(sess, episode + trained_eps)
|
||||
|
||||
if episode % 50 == 0:
|
||||
print_time_estimate(episode)
|
||||
|
||||
sys.stderr.write("[TRAIN] Saving model for final episode...\n")
|
||||
self.save_model(sess, episode+trained_eps)
|
||||
|
||||
writer.close()
|
||||
|
||||
return outcomes
|
||||
return outcomes
|
||||
|
||||
|
||||
# take turn, which finds the best state and picks it, based on the current network
|
||||
|
@ -240,105 +424,3 @@ class Network:
|
|||
# save the current state again, so we can continue running backprop based on the "previous" turn.
|
||||
|
||||
# NOTE: We need to make a method so that we can take a single turn or at least just pick the next best move, so we know how to evaluate according to TD-learning. Right now, our game just continues in a while loop without nothing to stop it!
|
||||
|
||||
|
||||
|
||||
def eval(self, trained_eps = 0):
|
||||
def do_eval(method, episodes = 1000, trained_eps = 0):
|
||||
start_time = time.time()
|
||||
|
||||
def print_time_estimate(eps_completed):
|
||||
cur_time = time.time()
|
||||
time_diff = cur_time - start_time
|
||||
eps_per_sec = eps_completed / time_diff
|
||||
secs_per_ep = time_diff / eps_completed
|
||||
eps_remaining = (episodes - eps_completed)
|
||||
sys.stderr.write("[EVAL ] Averaging {per_sec} episodes per second\n".format(per_sec = round(eps_per_sec, 2)))
|
||||
sys.stderr.write("[EVAL ] {eps_remaining} episodes remaining; approx. {time_remaining} seconds remaining\n".format(eps_remaining = eps_remaining, time_remaining = int(eps_remaining * secs_per_ep)))
|
||||
|
||||
sys.stderr.write("[EVAL ] Evaluating {eps} episode(s) with method '{method}'\n".format(eps=episodes, method=method))
|
||||
|
||||
if method == 'random':
|
||||
outcomes = []
|
||||
for i in range(1, episodes + 1):
|
||||
sys.stderr.write("[EVAL ] Episode {}".format(i))
|
||||
board = Board.initial_state
|
||||
while Board.outcome(board) is None:
|
||||
roll = (random.randrange(1,7), random.randrange(1,7))
|
||||
board = (self.p1.make_move(board, self.p1.get_sym(), roll))[0]
|
||||
roll = (random.randrange(1,7), random.randrange(1,7))
|
||||
board = Board.flip(Eval.make_random_move(Board.flip(board), 1, roll))
|
||||
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
|
||||
outcomes.append(Board.outcome(board)[1])
|
||||
sys.stderr.write("\n")
|
||||
|
||||
if i % 50 == 0:
|
||||
print_time_estimate(i)
|
||||
return outcomes
|
||||
elif method == 'pubeval':
|
||||
outcomes = []
|
||||
# Add the evaluation code for pubeval, the bot has a method make_pubeval_move(board, sym, roll), which can be used to get the best move according to pubeval
|
||||
for i in range(1, episodes + 1):
|
||||
sys.stderr.write("[EVAL ] Episode {}".format(i))
|
||||
board = Board.initial_state
|
||||
#print("init:", board, sep="\n")
|
||||
while Board.outcome(board) is None:
|
||||
#print("-"*30)
|
||||
roll = (random.randrange(1,7), random.randrange(1,7))
|
||||
#print(roll)
|
||||
|
||||
prev_board = tuple(board)
|
||||
board = (self.make_move(board, roll))[0]
|
||||
#print("post p1:", board, sep="\n")
|
||||
|
||||
#print("."*30)
|
||||
roll = (random.randrange(1,7), random.randrange(1,7))
|
||||
#print(roll)
|
||||
|
||||
prev_board = tuple(board)
|
||||
board = Eval.make_pubeval_move(board, -1, roll)[0][0:26]
|
||||
#print("post pubeval:", board, sep="\n")
|
||||
|
||||
|
||||
#print("*"*30)
|
||||
#print(board)
|
||||
#print("+"*30)
|
||||
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
|
||||
outcomes.append(Board.outcome(board)[1])
|
||||
sys.stderr.write("\n")
|
||||
|
||||
if i % 10 == 0:
|
||||
print_time_estimate(i)
|
||||
|
||||
return outcomes
|
||||
# elif method == 'dumbmodel':
|
||||
# config_prime = self.config.copy()
|
||||
# config_prime['model_path'] = os.path.join(config_prime['model_storage_path'], 'dumbmodel')
|
||||
# eval_bot = Bot(1, config = config_prime, name = "dumbmodel")
|
||||
# #print(self.config, "\n", config_prime)
|
||||
# outcomes = []
|
||||
# for i in range(1, episodes + 1):
|
||||
# sys.stderr.write("[EVAL ] Episode {}".format(i))
|
||||
# board = Board.initial_state
|
||||
# while Board.outcome(board) is None:
|
||||
# roll = (random.randrange(1,7), random.randrange(1,7))
|
||||
# board = (self.make_move(board, self.p1.get_sym(), roll))[0]
|
||||
|
||||
# roll = (random.randrange(1,7), random.randrange(1,7))
|
||||
# board = Board.flip(eval_bot.make_move(Board.flip(board), self.p1.get_sym(), roll)[0])
|
||||
# sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
|
||||
# outcomes.append(Board.outcome(board)[1])
|
||||
# sys.stderr.write("\n")
|
||||
|
||||
# if i % 50 == 0:
|
||||
# print_time_estimate(i)
|
||||
# return outcomes
|
||||
else:
|
||||
sys.stderr.write("[EVAL ] Evaluation method '{}' is not defined\n".format(method))
|
||||
return [0]
|
||||
|
||||
return [ (method, do_eval(method,
|
||||
self.config['episode_count'],
|
||||
trained_eps = trained_eps))
|
||||
for method
|
||||
in self.config['eval_methods'] ]
|
||||
|
|
19
plot.py
19
plot.py
|
@ -9,9 +9,26 @@ import matplotlib.dates as mdates
|
|||
|
||||
train_headers = ['timestamp', 'eps_train', 'eps_trained_session', 'sum', 'mean']
|
||||
eval_headers = ['timestamp', 'method', 'eps_train', 'eval_eps_used', 'sum', 'mean']
|
||||
bench_headers = ['method', 'sample_count', 'i', 'time', 'sum', 'mean']
|
||||
|
||||
model_path = 'models'
|
||||
|
||||
def plot_bench(data_path):
|
||||
df = pd.read_csv(data_path, sep=";",
|
||||
names=bench_headers, index_col=[0,1,2])
|
||||
for method_label in df.index.levels[0]:
|
||||
df_prime = df[['mean']].loc[method_label].unstack().T
|
||||
plot = df_prime.plot.box()
|
||||
plot.set_title("Evaluation variance, {}".format(method_label))
|
||||
plot.set_xlabel("Sample count")
|
||||
plot.set_ylabel("Mean score")
|
||||
plt.show(plot.figure)
|
||||
|
||||
# for later use:
|
||||
variances = df_prime.var()
|
||||
print(variances)
|
||||
|
||||
del df_prime, plot, variances
|
||||
|
||||
def dataframes(model_name):
|
||||
def df_timestamp_to_datetime(df):
|
||||
|
@ -44,7 +61,7 @@ if __name__ == '__main__':
|
|||
plt.show()
|
||||
|
||||
while True:
|
||||
df = dataframes('default')['eval']
|
||||
df = dataframes('a')['eval']
|
||||
|
||||
print(df)
|
||||
|
||||
|
|
306
test.py
306
test.py
|
@ -613,6 +613,312 @@ class TestBoardFlip(unittest.TestCase):
|
|||
-2)
|
||||
|
||||
self.assertEqual(Board.flip(Board.flip(board)), board)
|
||||
|
||||
def test_tesauro_initial(self):
|
||||
board = Board.initial_state
|
||||
|
||||
expected = (1,1,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,1,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,0,
|
||||
0,0,0,0,
|
||||
|
||||
1,1,1,1,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0.0,
|
||||
0,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,1,
|
||||
|
||||
0,0,0,0,
|
||||
1,1,1,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
1,1,1,1,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,0,0,
|
||||
|
||||
0.0,
|
||||
0,
|
||||
|
||||
1,
|
||||
0
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
self.assertTrue((Board.board_features_tesauro(board, 1) ==
|
||||
np.array(expected).reshape(1, 198)).all())
|
||||
|
||||
def test_tesauro_bars(self):
|
||||
board = list(Board.initial_state)
|
||||
board[1] = 0
|
||||
board[0] = 2
|
||||
board[24] = 0
|
||||
board[25] = -2
|
||||
|
||||
board = tuple(board)
|
||||
|
||||
expected = (0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,1,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,0,
|
||||
0,0,0,0,
|
||||
|
||||
1,1,1,1,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
1.0,
|
||||
0,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,1,
|
||||
|
||||
0,0,0,0,
|
||||
1,1,1,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
1,1,1,1,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
1.0,
|
||||
0,
|
||||
|
||||
1,
|
||||
0
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
self.assertTrue((Board.board_features_tesauro(board, 1) ==
|
||||
np.array(expected).reshape(1, 198)).all())
|
||||
|
||||
|
||||
def test_tesauro_home(self):
|
||||
board = list(Board.initial_state)
|
||||
|
||||
board[1] = 0
|
||||
board[24] = 0
|
||||
|
||||
board = tuple(board)
|
||||
|
||||
expected = (0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,1,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,0,
|
||||
0,0,0,0,
|
||||
|
||||
1,1,1,1,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0.0,
|
||||
2,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,1,
|
||||
|
||||
0,0,0,0,
|
||||
1,1,1,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
1,1,1,1,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0.0,
|
||||
2,
|
||||
|
||||
1,
|
||||
0
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
self.assertTrue((Board.board_features_tesauro(board, 1) ==
|
||||
np.array(expected).reshape(1, 198)).all())
|
||||
|
||||
|
||||
def test_tesauro_black_player(self):
|
||||
board = Board.initial_state
|
||||
|
||||
expected = (1,1,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,1,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,0,
|
||||
0,0,0,0,
|
||||
|
||||
1,1,1,1,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0.0,
|
||||
0,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,1,
|
||||
|
||||
0,0,0,0,
|
||||
1,1,1,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
1,1,1,1,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,0,0,
|
||||
|
||||
0.0,
|
||||
0,
|
||||
|
||||
0,
|
||||
1
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
self.assertTrue((Board.board_features_tesauro(board, -1) ==
|
||||
np.array(expected).reshape(1, 198)).all())
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
|
Loading…
Reference in New Issue
Block a user