This commit is contained in:
Christoffer Müller Madsen 2018-03-08 16:27:16 +01:00 committed by Alexander Munch-Hansen
parent a33826219d
commit 30183448ec
4 changed files with 172 additions and 68 deletions

5
bot.py
View File

@ -7,13 +7,14 @@ import random
class Bot: class Bot:
def __init__(self, sym): def __init__(self, sym, config = None):
self.config = config
self.cup = Cup() self.cup = Cup()
self.sym = sym self.sym = sym
self.graph = tf.Graph() self.graph = tf.Graph()
with self.graph.as_default(): with self.graph.as_default():
self.session = tf.Session() self.session = tf.Session()
self.network = Network(self.session) self.network = Network(self.session, config)
self.network.restore_model() self.network.restore_model()

114
game.py
View File

@ -1,19 +1,24 @@
from board import Board from board import Board
from bot import Bot from bot import Bot
from restore_bot import RestoreBot from restore_bot import RestoreBot
import numpy as np
from cup import Cup from cup import Cup
import numpy as np
import sys
class Game: class Game:
def __init__(self): def __init__(self, config = None):
self.config = config
self.board = Board.initial_state self.board = Board.initial_state
self.p1 = Bot(1) self.p1 = None
self.p2 = Bot(1) self.p2 = None
self.cup = Cup() self.cup = Cup()
def set_up_bots(self):
self.p1 = Bot(1, config = self.config)
self.p2 = Bot(1, config = self.config)
def roll(self): def roll(self):
return self.cup.roll() return self.cup.roll()
@ -32,39 +37,45 @@ class Game:
def board_state(self): def board_state(self):
return self.board return self.board
def train_model(self): def train_model(self, episodes=1000, save_step_size = 100, init_ep = 0):
episodes = 100 sys.stderr.write("[TRAIN] Training {} episodes and save_step_size {}\n".format(episodes, save_step_size))
outcomes = [] outcomes = []
for episode in range(episodes): for episode in range(episodes):
sys.stderr.write("[TRAIN] Episode {}".format(episode + init_ep))
self.board = Board.initial_state self.board = Board.initial_state
# prev_board = self.board
prev_board, prev_board_value = self.roll_and_find_best_for_bot() prev_board, prev_board_value = self.roll_and_find_best_for_bot()
# find the best move here, make this move, then change turn as the # find the best move here, make this move, then change turn as the
# first thing inside of the while loop and then call # first thing inside of the while loop and then call
# roll_and_find_best_for_bot to get V_t+1 # roll_and_find_best_for_bot to get V_t+1
# self.p1.make_move(prev_board, self.p1.get_sym(), self.roll())
while Board.outcome(self.board) is None: while Board.outcome(self.board) is None:
self.next_round() self.next_round()
cur_board, cur_board_value = self.roll_and_find_best_for_bot() cur_board, cur_board_value = self.roll_and_find_best_for_bot()
self.p1.get_network().train(prev_board, cur_board_value) self.p1.get_network().train(prev_board, cur_board_value)
prev_board = cur_board prev_board = cur_board
# self.next_round()
# print("-"*30) # print("-"*30)
# print(Board.pretty(self.board)) # print(Board.pretty(self.board))
# print("/"*30) # print("/"*30)
print("Outcome:", Board.outcome(self.board)[1]) sys.stderr.write("\t outcome {}".format(Board.outcome(self.board)[1]))
outcomes.append(Board.outcome(self.board)[1]) outcomes.append(Board.outcome(self.board)[1])
final_score = np.array([ Board.outcome(self.board)[1] ]).reshape((1, 1)) final_score = np.array([ Board.outcome(self.board)[1] ]).reshape((1, 1))
self.p1.get_network().train(prev_board, final_score) self.p1.get_network().train(prev_board, final_score)
print("trained episode {}".format(episode))
if episode % 10 == 0: sys.stderr.write("\n")
print("Saving...")
if episode % min(save_step_size, episodes) == 0:
sys.stderr.write("[TRAIN] Saving model...\n")
self.p1.get_network().save_model() self.p1.get_network().save_model()
self.p2.restore_model() self.p2.restore_model()
print(sum(outcomes))
print(outcomes)
print(sum(outcomes)) sys.stderr.write("[TRAIN] Saving model for final episode...\n")
self.p1.get_network().save_model()
self.p2.restore_model()
return outcomes
def next_round_test(self): def next_round_test(self):
print(self.board) print(self.board)
@ -74,31 +85,58 @@ class Game:
print(self.board) print(self.board)
print("--------------------------------") print("--------------------------------")
def play(self, amount_of_games): def eval(self, init_ep = 0):
def do_eval(method, episodes = 1000, init_ep = 0):
sys.stderr.write("[EVAL ] Evaluating {eps} episode(s) with method '{method}'\n".format(eps=episodes, method=method))
if method == 'random':
outcomes = []
for i in range(episodes):
sys.stderr.write("[EVAL ] Episode {}".format(i))
self.board = Board.initial_state
while Board.outcome(self.board) is None:
roll = self.roll()
self.board = (self.p1.make_move(self.board, self.p1.get_sym(), roll))[0]
roll = self.roll()
self.board = Board.flip(self.p2.make_random_move(Board.flip(self.board), self.p2.get_sym(), roll))
sys.stderr.write("\t outcome {}".format(Board.outcome(self.board)[1]))
outcomes.append(Board.outcome(self.board)[1])
sys.stderr.write("\n")
return outcomes
else:
sys.stderr.write("[EVAL ] Evaluation method '{}' is not defined\n".format(method))
return [0]
return [ (method, do_eval(method,
self.config['episode_count'],
init_ep = init_ep))
for method
in self.config['eval_methods'] ]
def play(self, episodes = 1000):
outcomes = [] outcomes = []
for i in range(amount_of_games): for i in range(episodes):
count = 0
self.board = Board.initial_state self.board = Board.initial_state
while Board.outcome(self.board) is None: while Board.outcome(self.board) is None:
count += 1 # count += 1
print("Turn:",count) # print("Turn:",count)
roll = self.roll() roll = self.roll()
print("type of board: ", type(self.board)) # print("type of board: ", type(self.board))
print("Board:",self.board) # print("Board:",self.board)
print("{} rolled: {}".format(self.p1.get_sym(), roll)) # print("{} rolled: {}".format(self.p1.get_sym(), roll))
self.board = (self.p1.make_move(self.board, self.p1.get_sym(), roll))[0] self.board = (self.p1.make_random_move(self.board, self.p1.get_sym(), roll))
print(self.board) # print(self.board)
print() # print()
count += 1 # count += 1
roll = self.roll() roll = self.roll()
print("{} rolled: {}".format(self.p2.get_sym(), roll)) # print("{} rolled: {}".format(self.p2.get_sym(), roll))
self.board = Board.flip(self.p2.make_random_move(Board.flip(self.board), self.p2.get_sym(), roll)) self.board = Board.flip(self.p2.make_random_move(Board.flip(self.board), self.p2.get_sym(), roll))
@ -108,21 +146,11 @@ class Game:
print_winner = "-1: Black " + str(Board.outcome(self.board)) print_winner = "-1: Black " + str(Board.outcome(self.board))
outcomes.append(Board.outcome(self.board)[1]) outcomes.append(Board.outcome(self.board)[1])
print("The winner is {}!".format(print_winner)) print("The winner is {}!".format(print_winner))
print("Final board:",Board.pretty(self.board)) print("Round:",i)
# print("Final board:",Board.pretty(self.board))
return outcomes return outcomes
# return count # return count
highest = 0 highest = 0
#for i in range(100000):
# try:
g = Game()
#g.train_model()
outcomes = g.play(2000)
print(outcomes)
print(sum(outcomes))
#count = g.play()
# highest = max(highest,count)
# except KeyboardInterrupt:
# break
#print("\nHighest amount of turns is:",highest)

83
main.py Normal file
View File

@ -0,0 +1,83 @@
import argparse
import config
def print_train_outcome(outcome, init_ep = 0):
format_vars = { 'init_ep': init_ep,
'count': len(train_outcome),
'sum': sum(train_outcome),
'mean': sum(train_outcome) / len(train_outcome)}
print("train;{init_ep};{count};{sum};{mean}".format(**format_vars))
def print_eval_outcomes(outcomes, init_ep = 0):
for outcome in eval_outcomes:
scores = outcome[1]
format_vars = { 'init_ep': init_ep,
'method': outcome[0],
'count': len(scores),
'sum': sum(scores),
'mean': sum(scores) / len(scores)
}
print("eval;{method};{init_ep};{count};{sum};{mean}".format(**format_vars))
parser = argparse.ArgumentParser(description="Backgammon games")
parser.add_argument('--episodes', action='store', dest='episode_count',
type=int, default=1000,
help='number of episodes to train')
parser.add_argument('--model-path', action='store', dest='model_path',
default='./model',
help='path to Tensorflow model')
parser.add_argument('--eval-methods', action='store',
default=['random'], nargs='*',
help='specifies evaluation methods')
parser.add_argument('--eval', action='store_true',
help='whether to evaluate the neural network with a random choice bot')
parser.add_argument('--train', action='store_true',
help='whether to train the neural network')
parser.add_argument('--play', action='store_true',
help='whether to play with the neural network')
args = parser.parse_args()
config = {
'model_path': args.model_path,
'episode_count': args.episode_count,
'eval_methods': args.eval_methods,
'train': args.train,
'play': args.play,
'eval': args.eval
}
#print("-"*30)
#print(type(args.eval_methods))
#print(args.eval_methods)
#print("-"*30)
import game
g = game.Game(config = config)
g.set_up_bots()
episode_count = args.episode_count
if args.train:
eps = 0
while True:
train_outcome = g.train_model(episodes = episode_count, init_ep = eps)
print_train_outcome(train_outcome, init_ep = eps)
if args.eval:
eval_outcomes = g.eval(init_ep = eps)
print_eval_outcomes(eval_outcomes, init_ep = eps)
eps += episode_count
elif args.eval:
outcomes = g.eval()
print_eval_outcomes(outcomes, init_ep = 0)
#elif args.play:
# g.play(episodes = episode_count)
#outcomes = g.play(2000)
#print(outcomes)
#print(sum(outcomes))
#count = g.play()
# highest = max(highest,count)
# except KeyboardInterrupt:
# break
#print("\nHighest amount of turns is:",highest)

View File

@ -2,19 +2,15 @@ import tensorflow as tf
from cup import Cup from cup import Cup
import numpy as np import numpy as np
from board import Board from board import Board
#from game import Game
import os import os
import config
class Config():
class Network:
hidden_size = 40 hidden_size = 40
input_size = 26 input_size = 26
output_size = 1 output_size = 1
# Can't remember the best learning_rate, look this up # Can't remember the best learning_rate, look this up
learning_rate = 0.1 learning_rate = 0.1
checkpoint_path = "/tmp/"
class Network:
# TODO: Actually compile tensorflow properly # TODO: Actually compile tensorflow properly
#os.environ["TF_CPP_MIN_LOG_LEVEL"]="2" #os.environ["TF_CPP_MIN_LOG_LEVEL"]="2"
@ -24,26 +20,22 @@ class Network:
return tf.scalar_mul(a, tf.tanh(x, name)) return tf.scalar_mul(a, tf.tanh(x, name))
def __init__(self, session): def __init__(self, session, config = None):
self.config = config
self.session = session self.session = session
self.config = Config self.checkpoint_path = config['model_path']
input_size = self.config.input_size
hidden_size = self.config.hidden_size
output_size = self.config.output_size
learning_rate = self.config.learning_rate
self.checkpoint_path = self.config.checkpoint_path
# input = x # input = x
self.x = tf.placeholder('float', [1,input_size], name='x') self.x = tf.placeholder('float', [1, Network.input_size], name='x')
self.value_next = tf.placeholder('float', [1,output_size], name="value_next") self.value_next = tf.placeholder('float', [1, Network.output_size], name="value_next")
xavier_init = tf.contrib.layers.xavier_initializer() xavier_init = tf.contrib.layers.xavier_initializer()
W_1 = tf.Variable(xavier_init((input_size, hidden_size))) W_1 = tf.Variable(xavier_init((Network.input_size, Network.hidden_size)))
W_2 = tf.Variable(xavier_init((hidden_size, output_size))) W_2 = tf.Variable(xavier_init((Network.hidden_size, Network.output_size)))
b_1 = tf.zeros(hidden_size,) b_1 = tf.zeros(Network.hidden_size,)
b_2 = tf.zeros(output_size,) b_2 = tf.zeros(Network.output_size,)
value_after_input = self.custom_tanh(tf.matmul(self.x, W_1) + b_1, name='hidden_layer') value_after_input = self.custom_tanh(tf.matmul(self.x, W_1) + b_1, name='hidden_layer')
@ -61,7 +53,7 @@ class Network:
with tf.variable_scope('apply_gradients'): with tf.variable_scope('apply_gradients'):
for gradient, trainable_var in zip(gradients, trainable_vars): for gradient, trainable_var in zip(gradients, trainable_vars):
# Hopefully this is Δw_t = α(V_t+1 - V_t)▿_wV_t. # Hopefully this is Δw_t = α(V_t+1 - V_t)▿_wV_t.
backprop_calc = learning_rate * difference_in_values * gradient backprop_calc = Network.learning_rate * difference_in_values * gradient
grad_apply = trainable_var.assign_add(backprop_calc) grad_apply = trainable_var.assign_add(backprop_calc)
apply_gradients.append(grad_apply) apply_gradients.append(grad_apply)
@ -92,7 +84,7 @@ class Network:
return val return val
def save_model(self): def save_model(self):
self.saver.save(self.session, self.checkpoint_path + 'model.ckpt') self.saver.save(self.session, os.path.join(self.checkpoint_path, 'model.ckpt'))
def restore_model(self): def restore_model(self):
if os.path.isfile(self.checkpoint_path): if os.path.isfile(self.checkpoint_path):