This commit is contained in:
Alexander Munch-Hansen 2018-05-15 18:16:44 +02:00
parent 00974b0f11
commit 260c32d909

View File

@ -312,7 +312,7 @@ class Network:
# start = time.time() # start = time.time()
list_of_moves = [] list_of_moves = []
test_list = []
# Prepping of data # Prepping of data
for idx, board in enumerate(boards): for idx, board in enumerate(boards):
all_board_moves = [] all_board_moves = []
@ -321,16 +321,41 @@ class Network:
for state in all_states: for state in all_states:
state = np.array(self.board_trans_func(state, player*-1)[0]) state = np.array(self.board_trans_func(state, player*-1)[0])
all_board_moves.append(state) all_board_moves.append(state)
test_list.append(state)
list_of_moves.append(np.array(all_board_moves)) list_of_moves.append(np.array(all_board_moves))
# print(time.time() - start) list_of_lengths = [len(board) for board in list_of_moves]
# start = time.time()
# Running data through networks start = time.time()
for i in range(len(test_list)):
self.model.predict_on_batch(np.array([state]))
print("Indiviual rolls:", time.time() - start)
all_scores = [self.model.predict_on_batch(board) for board in list_of_moves] all_scores = [self.model.predict_on_batch(board) for board in list_of_moves]
start = time.time()
all_scores_legit = self.model.predict_on_batch(np.array(test_list))
split_scores = []
from_idx = 0
for length in list_of_lengths:
split_scores.append(all_scores_legit[from_idx:from_idx+length])
from_idx += length
transformed_splits = [tf.reduce_mean(scores) for scores in split_scores]
print(transformed_splits)
print("All in one:", time.time() - start)
scores_means = [tf.reduce_mean(score) for score in all_scores] scores_means = [tf.reduce_mean(score) for score in all_scores]
print(scores_means)
transformed_means = [x if player == 1 else (1-x) for x in scores_means] transformed_means = [x if player == 1 else (1-x) for x in scores_means]
# print(time.time() - start) # print(time.time() - start)