backgammon/network.py

150 lines
6.8 KiB
Python
Raw Normal View History

2018-03-04 16:35:36 +00:00
import tensorflow as tf
from cup import Cup
import numpy as np
from board import Board
import os
2018-03-08 15:27:16 +00:00
class Network:
2018-03-04 16:35:36 +00:00
hidden_size = 40
input_size = 26
output_size = 1
# Can't remember the best learning_rate, look this up
learning_rate = 0.1
2018-02-07 14:31:05 +00:00
2018-03-04 16:35:36 +00:00
# TODO: Actually compile tensorflow properly
2018-03-06 11:04:56 +00:00
#os.environ["TF_CPP_MIN_LOG_LEVEL"]="2"
def custom_tanh(self, x, name=None):
2018-03-14 19:42:09 +00:00
return tf.scalar_mul(tf.constant(2.00), tf.tanh(x, name))
2018-03-04 16:35:36 +00:00
2018-03-14 19:42:09 +00:00
def __init__(self, session, config, name):
2018-03-08 15:27:16 +00:00
self.config = config
2018-03-04 16:35:36 +00:00
self.session = session
2018-03-08 15:27:16 +00:00
self.checkpoint_path = config['model_path']
2018-03-14 19:42:09 +00:00
self.name = name
# Restore trained episode count for model
2018-03-11 23:11:55 +00:00
episode_count_path = os.path.join(self.checkpoint_path, "episodes_trained")
if os.path.isfile(episode_count_path):
with open(episode_count_path, 'r') as f:
self.config['start_episode'] = int(f.read())
2018-03-08 15:27:16 +00:00
2018-03-04 16:35:36 +00:00
# input = x
2018-03-08 15:27:16 +00:00
self.x = tf.placeholder('float', [1, Network.input_size], name='x')
self.value_next = tf.placeholder('float', [1, Network.output_size], name="value_next")
2018-03-04 16:35:36 +00:00
xavier_init = tf.contrib.layers.xavier_initializer()
2018-03-14 19:42:09 +00:00
W_1 = tf.get_variable("w_1", (Network.input_size, Network.hidden_size),
initializer=xavier_init)
W_2 = tf.get_variable("w_2", (Network.hidden_size, Network.output_size),
initializer=xavier_init)
2018-03-04 16:35:36 +00:00
2018-03-14 19:42:09 +00:00
b_1 = tf.get_variable("b_1", (Network.hidden_size,),
initializer=tf.zeros_initializer)
b_2 = tf.get_variable("b_2", (Network.output_size,),
initializer=tf.zeros_initializer)
2018-03-04 16:35:36 +00:00
value_after_input = self.custom_tanh(tf.matmul(self.x, W_1) + b_1, name='hidden_layer')
2018-03-04 16:35:36 +00:00
self.value = self.custom_tanh(tf.matmul(value_after_input, W_2) + b_2, name='output_layer')
2018-03-04 16:35:36 +00:00
2018-03-14 19:42:09 +00:00
# tf.reduce_sum basically finds the sum of its input, so this gives the
# difference between the two values, in case they should be lists, which
# they might be if our input changes
2018-03-04 16:35:36 +00:00
difference_in_values = tf.reduce_sum(self.value_next - self.value, name='difference')
trainable_vars = tf.trainable_variables()
gradients = tf.gradients(self.value, trainable_vars)
apply_gradients = []
with tf.variable_scope('apply_gradients'):
for gradient, trainable_var in zip(gradients, trainable_vars):
# Hopefully this is Δw_t = α(V_t+1 - V_t)▿_wV_t.
2018-03-08 15:27:16 +00:00
backprop_calc = Network.learning_rate * difference_in_values * gradient
2018-03-04 16:35:36 +00:00
grad_apply = trainable_var.assign_add(backprop_calc)
apply_gradients.append(grad_apply)
self.training_op = tf.group(*apply_gradients, name='training_op')
self.saver = tf.train.Saver(max_to_keep=1)
self.session.run(tf.global_variables_initializer())
2018-02-07 14:31:05 +00:00
def eval_state(self, state):
# Run state through a network
2018-03-04 16:35:36 +00:00
2018-03-14 19:42:09 +00:00
# Remember to create placeholders for everything because wtf tensorflow
# and graphs
2018-03-04 16:35:36 +00:00
# Remember to create the dense layers
2018-03-14 19:42:09 +00:00
# Figure out a way of giving a layer a custom activiation function (we
# want something which gives [-2,2]. Naively tahn*2, however I fell this
# is wrong.
# tf.group, groups a bunch of actions, so calculate the different
# gradients for the different weights, by using tf.trainable_variables()
# to find all variables and tf.gradients(current_value,
# trainable_variables) to find all the gradients. We can then loop
# through this and calculate the trace for each gradient and variable
# pair (note, zip can be used to combine the two lists found before),
# and then we can calculate the overall change in weights, based on the
# formula listed in tesauro (learning_rate * difference_in_values *
# trace), this calculation can be assigned to a tf variable and put in a
# list and then this can be grouped into a single operation, essentially
# building our own backprop function.
# Grouping them is done by
# tf.group(*the_gradients_from_before_we_want_to_apply,
# name="training_op")
# If we remove the eligibily trace to begin with, we only have to
# implement learning_rate * (difference_in_values) * gradients (the
# before-mentioned calculation.
2018-03-04 16:35:36 +00:00
2018-03-14 19:42:09 +00:00
# print("Network is evaluating")
2018-03-04 16:35:36 +00:00
val = self.session.run(self.value, feed_dict={self.x: state})
2018-03-14 19:42:09 +00:00
#print("eval ({})".format(self.name), state, val, sep="\n")
2018-03-04 16:35:36 +00:00
return val
def save_model(self, episode_count):
2018-03-08 15:27:16 +00:00
self.saver.save(self.session, os.path.join(self.checkpoint_path, 'model.ckpt'))
2018-03-11 23:11:55 +00:00
with open(os.path.join(self.checkpoint_path, "episodes_trained"), 'w+') as f:
2018-03-14 19:42:09 +00:00
print("[NETWK] ({name}) Saving model to:".format(name = self.name),
os.path.join(self.checkpoint_path, 'model.ckpt'))
f.write(str(episode_count) + "\n")
2018-03-04 16:35:36 +00:00
def restore_model(self):
2018-03-14 19:42:09 +00:00
if os.path.isfile(os.path.join(self.checkpoint_path, 'model.ckpt.index')):
2018-03-06 10:53:42 +00:00
latest_checkpoint = tf.train.latest_checkpoint(self.checkpoint_path)
2018-03-14 19:42:09 +00:00
print("[NETWK] ({name}) Restoring model from:".format(name = self.name),
str(latest_checkpoint))
2018-03-06 10:53:42 +00:00
self.saver.restore(self.session, latest_checkpoint)
2018-03-04 16:35:36 +00:00
# Have a circular dependency, #fuck, need to rewrite something
2018-03-06 15:23:08 +00:00
def train(self, board, v_next):
2018-03-04 16:35:36 +00:00
# print("lol")
2018-03-06 15:23:08 +00:00
board = np.array(board).reshape((1,26))
self.session.run(self.training_op, feed_dict = {self.x:board, self.value_next: v_next})
2018-03-04 16:35:36 +00:00
# while game isn't done:
#x_next = g.next_move()
#value_next = network.eval_state(x_next)
#self.session.run(self.training_op, feed_dict={self.x: x, self.value_next: value_next})
#x = x_next
# take turn, which finds the best state and picks it, based on the current network
# save current state
# run training operation (session.run(self.training_op, {x:x, value_next, value_next})), (something which does the backprop, based on the state after having taken a turn, found before, and the state we saved in the beginning and from now we'll save it at the end of the turn
# save the current state again, so we can continue running backprop based on the "previous" turn.
# NOTE: We need to make a method so that we can take a single turn or at least just pick the next best move, so we know how to evaluate according to TD-learning. Right now, our game just continues in a while loop without nothing to stop it!