2018-03-04 16:35:36 +00:00
import tensorflow as tf
from cup import Cup
import numpy as np
from board import Board
import os
2018-03-20 12:03:21 +00:00
import time
import sys
import random
2018-03-20 12:17:38 +00:00
from eval import Eval
2018-03-20 12:03:21 +00:00
2018-03-27 00:26:15 +00:00
2018-03-08 15:27:16 +00:00
class Network :
2018-03-28 10:00:47 +00:00
# board_features_quack has size 28
# board_features_quack_fat has size 30
# board_features_tesauro has size 198
board_reps = {
' quack-fat ' : ( 30 , Board . board_features_quack_fat ) ,
' quack ' : ( 28 , Board . board_features_quack ) ,
' tesauro ' : ( 198 , Board . board_features_tesauro )
}
2018-03-06 11:19:04 +00:00
def custom_tanh ( self , x , name = None ) :
2018-03-14 19:42:09 +00:00
return tf . scalar_mul ( tf . constant ( 2.00 ) , tf . tanh ( x , name ) )
2018-03-27 00:26:15 +00:00
2018-03-20 12:03:21 +00:00
def __init__ ( self , config , name ) :
2018-03-08 15:27:16 +00:00
self . config = config
2018-03-26 14:45:26 +00:00
self . checkpoint_path = os . path . join ( config [ ' model_storage_path ' ] , config [ ' model ' ] )
2018-03-22 14:30:47 +00:00
2018-03-14 19:42:09 +00:00
self . name = name
2018-03-22 14:30:47 +00:00
2018-03-28 10:00:47 +00:00
# Set board representation from config
self . input_size , self . board_trans_func = Network . board_reps [
self . config [ ' board_representation ' ]
]
self . output_size = 1
self . hidden_size = 40
# Can't remember the best learning_rate, look this up
self . learning_rate = 0.01
2018-03-22 14:30:47 +00:00
# Restore trained episode count for model
episode_count_path = os . path . join ( self . checkpoint_path , " episodes_trained " )
if os . path . isfile ( episode_count_path ) :
with open ( episode_count_path , ' r ' ) as f :
self . episodes_trained = int ( f . read ( ) )
else :
self . episodes_trained = 0
2018-03-27 00:26:15 +00:00
2018-03-04 16:35:36 +00:00
# input = x
2018-03-28 10:00:47 +00:00
self . x = tf . placeholder ( ' float ' , [ 1 , self . input_size ] , name = ' input ' )
self . value_next = tf . placeholder ( ' float ' , [ 1 , self . output_size ] , name = " value_next " )
2018-03-04 16:35:36 +00:00
xavier_init = tf . contrib . layers . xavier_initializer ( )
2018-03-27 00:26:15 +00:00
2018-03-28 10:00:47 +00:00
W_1 = tf . get_variable ( " w_1 " , ( self . input_size , self . hidden_size ) ,
2018-03-14 19:42:09 +00:00
initializer = xavier_init )
2018-03-28 10:00:47 +00:00
W_2 = tf . get_variable ( " w_2 " , ( self . hidden_size , self . output_size ) ,
2018-03-14 19:42:09 +00:00
initializer = xavier_init )
2018-03-04 16:35:36 +00:00
2018-03-28 10:00:47 +00:00
b_1 = tf . get_variable ( " b_1 " , ( self . hidden_size , ) ,
2018-03-14 19:42:09 +00:00
initializer = tf . zeros_initializer )
2018-03-28 10:00:47 +00:00
b_2 = tf . get_variable ( " b_2 " , ( self . output_size , ) ,
2018-03-14 19:42:09 +00:00
initializer = tf . zeros_initializer )
2018-03-04 16:35:36 +00:00
2018-03-27 00:26:15 +00:00
value_after_input = tf . sigmoid ( tf . matmul ( self . x , W_1 ) + b_1 , name = ' hidden_layer ' )
2018-03-04 16:35:36 +00:00
2018-03-22 14:30:47 +00:00
self . value = tf . sigmoid ( tf . matmul ( value_after_input , W_2 ) + b_2 , name = ' output_layer ' )
2018-03-04 16:35:36 +00:00
2018-03-14 19:42:09 +00:00
# tf.reduce_sum basically finds the sum of its input, so this gives the
# difference between the two values, in case they should be lists, which
# they might be if our input changes
2018-03-20 12:03:21 +00:00
# TODO: Alexander thinks that self.value will be computed twice (instead of once)
2018-03-22 14:30:47 +00:00
difference_in_values = tf . reshape ( tf . subtract ( self . value_next , self . value , name = ' difference_in_values ' ) , [ ] )
tf . summary . scalar ( " difference_in_values " , tf . abs ( difference_in_values ) )
2018-03-27 00:26:15 +00:00
2018-03-04 16:35:36 +00:00
trainable_vars = tf . trainable_variables ( )
gradients = tf . gradients ( self . value , trainable_vars )
2018-03-27 00:26:15 +00:00
2018-03-04 16:35:36 +00:00
apply_gradients = [ ]
2018-03-27 00:26:15 +00:00
2018-03-04 16:35:36 +00:00
with tf . variable_scope ( ' apply_gradients ' ) :
for gradient , trainable_var in zip ( gradients , trainable_vars ) :
# Hopefully this is Δw_t = α (V_t+1 - V_t)▿_wV_t.
2018-03-28 10:00:47 +00:00
backprop_calc = self . learning_rate * difference_in_values * gradient
2018-03-04 16:35:36 +00:00
grad_apply = trainable_var . assign_add ( backprop_calc )
apply_gradients . append ( grad_apply )
2018-03-27 00:26:15 +00:00
2018-03-04 16:35:36 +00:00
self . training_op = tf . group ( * apply_gradients , name = ' training_op ' )
2018-03-22 14:30:47 +00:00
self . saver = tf . train . Saver ( max_to_keep = 1 )
2018-03-27 00:26:15 +00:00
2018-03-22 14:30:47 +00:00
def eval_state ( self , sess , state ) :
2018-02-07 14:31:05 +00:00
# Run state through a network
2018-03-04 16:35:36 +00:00
2018-03-14 19:42:09 +00:00
# Remember to create placeholders for everything because wtf tensorflow
# and graphs
2018-03-04 16:35:36 +00:00
# Remember to create the dense layers
2018-03-14 19:42:09 +00:00
# Figure out a way of giving a layer a custom activiation function (we
# want something which gives [-2,2]. Naively tahn*2, however I fell this
# is wrong.
# tf.group, groups a bunch of actions, so calculate the different
# gradients for the different weights, by using tf.trainable_variables()
# to find all variables and tf.gradients(current_value,
# trainable_variables) to find all the gradients. We can then loop
# through this and calculate the trace for each gradient and variable
# pair (note, zip can be used to combine the two lists found before),
# and then we can calculate the overall change in weights, based on the
# formula listed in tesauro (learning_rate * difference_in_values *
# trace), this calculation can be assigned to a tf variable and put in a
# list and then this can be grouped into a single operation, essentially
# building our own backprop function.
# Grouping them is done by
# tf.group(*the_gradients_from_before_we_want_to_apply,
# name="training_op")
# If we remove the eligibily trace to begin with, we only have to
# implement learning_rate * (difference_in_values) * gradients (the
# before-mentioned calculation.
2018-03-04 16:35:36 +00:00
2018-03-14 19:42:09 +00:00
# print("Network is evaluating")
2018-03-27 00:26:15 +00:00
# print("eval ({})".format(self.name), state, val, sep="\n")
2018-03-22 14:30:47 +00:00
2018-03-27 00:26:15 +00:00
return sess . run ( self . value , feed_dict = { self . x : state } )
2018-03-04 16:35:36 +00:00
2018-03-22 14:30:47 +00:00
def save_model ( self , sess , episode_count ) :
self . saver . save ( sess , os . path . join ( self . checkpoint_path , ' model.ckpt ' ) )
2018-03-11 23:11:55 +00:00
with open ( os . path . join ( self . checkpoint_path , " episodes_trained " ) , ' w+ ' ) as f :
2018-03-27 00:26:15 +00:00
print ( " [NETWK] ( {name} ) Saving model to: " . format ( name = self . name ) ,
2018-03-14 19:42:09 +00:00
os . path . join ( self . checkpoint_path , ' model.ckpt ' ) )
2018-03-09 23:22:20 +00:00
f . write ( str ( episode_count ) + " \n " )
2018-03-27 00:26:15 +00:00
2018-03-22 14:30:47 +00:00
def restore_model ( self , sess ) :
2018-03-14 19:42:09 +00:00
if os . path . isfile ( os . path . join ( self . checkpoint_path , ' model.ckpt.index ' ) ) :
2018-03-06 10:53:42 +00:00
latest_checkpoint = tf . train . latest_checkpoint ( self . checkpoint_path )
2018-03-27 00:26:15 +00:00
print ( " [NETWK] ( {name} ) Restoring model from: " . format ( name = self . name ) ,
2018-03-14 19:42:09 +00:00
str ( latest_checkpoint ) )
2018-03-22 14:30:47 +00:00
self . saver . restore ( sess , latest_checkpoint )
2018-03-20 12:03:21 +00:00
variables_names = [ v . name for v in tf . trainable_variables ( ) ]
2018-03-22 14:30:47 +00:00
values = sess . run ( variables_names )
2018-03-20 12:03:21 +00:00
for k , v in zip ( variables_names , values ) :
print ( " Variable: " , k )
print ( " Shape: " , v . shape )
print ( v )
# Restore trained episode count for model
episode_count_path = os . path . join ( self . checkpoint_path , " episodes_trained " )
if os . path . isfile ( episode_count_path ) :
with open ( episode_count_path , ' r ' ) as f :
self . config [ ' start_episode ' ] = int ( f . read ( ) )
2018-03-04 16:35:36 +00:00
2018-03-27 00:26:15 +00:00
def make_move ( self , sess , board , roll , player ) :
2018-03-20 12:03:21 +00:00
# print(Board.pretty(board))
2018-03-27 00:26:15 +00:00
legal_moves = Board . calculate_legal_states ( board , player , roll )
2018-03-28 10:00:47 +00:00
moves_and_scores = [ ( move , self . eval_state ( sess , self . board_trans_func ( move , player ) ) ) for move in legal_moves ]
2018-03-27 00:26:15 +00:00
scores = [ x [ 1 ] if np . sign ( player ) > 0 else 1 - x [ 1 ] for x in moves_and_scores ]
2018-03-20 12:03:21 +00:00
best_score_index = np . array ( scores ) . argmax ( )
best_move_pair = moves_and_scores [ best_score_index ]
2018-03-27 00:26:15 +00:00
# print("Found the best state, being:", np.array(move_scores).argmax())
2018-03-20 12:03:21 +00:00
return best_move_pair
2018-03-27 00:26:15 +00:00
2018-03-27 11:02:36 +00:00
def eval ( self , episode_count , trained_eps = 0 , tf_session = None ) :
def do_eval ( sess , method , episodes = 1000 , trained_eps = 0 ) :
2018-03-27 00:26:15 +00:00
start_time = time . time ( )
def print_time_estimate ( eps_completed ) :
cur_time = time . time ( )
time_diff = cur_time - start_time
eps_per_sec = eps_completed / time_diff
secs_per_ep = time_diff / eps_completed
eps_remaining = ( episodes - eps_completed )
sys . stderr . write (
" [EVAL ] Averaging {per_sec} episodes per second \n " . format ( per_sec = round ( eps_per_sec , 2 ) ) )
sys . stderr . write (
" [EVAL ] {eps_remaining} episodes remaining; approx. {time_remaining} seconds remaining \n " . format (
eps_remaining = eps_remaining , time_remaining = int ( eps_remaining * secs_per_ep ) ) )
sys . stderr . write (
" [EVAL ] Evaluating {eps} episode(s) with method ' {method} ' \n " . format ( eps = episodes , method = method ) )
if method == ' random ' :
outcomes = [ ]
""" for i in range(1, episodes + 1):
sys . stderr . write ( " [EVAL ] Episode {} " . format ( i ) )
board = Board . initial_state
while Board . outcome ( board ) is None :
roll = ( random . randrange ( 1 , 7 ) , random . randrange ( 1 , 7 ) )
board = ( self . p1 . make_move ( sess , board , self . p1 . get_sym ( ) , roll ) ) [ 0 ]
roll = ( random . randrange ( 1 , 7 ) , random . randrange ( 1 , 7 ) )
board = Board . flip ( Eval . make_random_move ( Board . flip ( board ) , 1 , roll ) )
sys . stderr . write ( " \t outcome {} " . format ( Board . outcome ( board ) [ 1 ] ) )
outcomes . append ( Board . outcome ( board ) [ 1 ] )
sys . stderr . write ( " \n " )
if i % 50 == 0 :
print_time_estimate ( i ) """
return outcomes
elif method == ' pubeval ' :
outcomes = [ ]
# Add the evaluation code for pubeval, the bot has a method make_pubeval_move(board, sym, roll),
# which can be used to get the best move according to pubeval
for i in range ( 1 , episodes + 1 ) :
sys . stderr . write ( " [EVAL ] Episode {} " . format ( i ) )
board = Board . initial_state
# print("init:", board, sep="\n")
while Board . outcome ( board ) is None :
# print("-"*30)
roll = ( random . randrange ( 1 , 7 ) , random . randrange ( 1 , 7 ) )
# print(roll)
# prev_board = tuple(board)
board = ( self . make_move ( sess , board , roll , 1 ) ) [ 0 ]
# print("post p1:", board, sep="\n")
# print("."*30)
roll = ( random . randrange ( 1 , 7 ) , random . randrange ( 1 , 7 ) )
# print(roll)
# prev_board = tuple(board)
board = Eval . make_pubeval_move ( board , - 1 , roll ) [ 0 ] [ 0 : 26 ]
# print("post pubeval:", board, sep="\n")
# print("*"*30)
# print(board)
# print("+"*30)
sys . stderr . write ( " \t outcome {} " . format ( Board . outcome ( board ) [ 1 ] ) )
outcomes . append ( Board . outcome ( board ) [ 1 ] )
sys . stderr . write ( " \n " )
if i % 10 == 0 :
print_time_estimate ( i )
return outcomes
elif method == ' dumbeval ' :
outcomes = [ ]
# Add the evaluation code for pubeval, the bot has a method make_pubeval_move(board, sym, roll),
# which can be used to get the best move according to pubeval
for i in range ( 1 , episodes + 1 ) :
sys . stderr . write ( " [EVAL ] Episode {} " . format ( i ) )
board = Board . initial_state
# print("init:", board, sep="\n")
while Board . outcome ( board ) is None :
# print("-"*30)
roll = ( random . randrange ( 1 , 7 ) , random . randrange ( 1 , 7 ) )
# print(roll)
# prev_board = tuple(board)
board = ( self . make_move ( sess , board , roll , 1 ) ) [ 0 ]
# print("post p1:", board, sep="\n")
# print("."*30)
roll = ( random . randrange ( 1 , 7 ) , random . randrange ( 1 , 7 ) )
# print(roll)
# prev_board = tuple(board)
board = Eval . make_dumbeval_move ( board , - 1 , roll ) [ 0 ] [ 0 : 26 ]
# print("post pubeval:", board, sep="\n")
# print("*"*30)
# print(board)
# print("+"*30)
sys . stderr . write ( " \t outcome {} " . format ( Board . outcome ( board ) [ 1 ] ) )
outcomes . append ( Board . outcome ( board ) [ 1 ] )
sys . stderr . write ( " \n " )
if i % 10 == 0 :
print_time_estimate ( i )
return outcomes
elif method == ' dumbmodel ' :
outcomes = [ ]
"""
config_prime = self . config . copy ( )
config_prime [ ' model_path ' ] = os . path . join ( config_prime [ ' model_storage_path ' ] , ' dumbmodel ' )
eval_bot = Bot ( 1 , config = config_prime , name = " dumbmodel " )
#print(self.config, "\n", config_prime)
outcomes = [ ]
for i in range ( 1 , episodes + 1 ) :
sys . stderr . write ( " [EVAL ] Episode {} " . format ( i ) )
board = Board . initial_state
while Board . outcome ( board ) is None :
roll = ( random . randrange ( 1 , 7 ) , random . randrange ( 1 , 7 ) )
board = ( self . make_move ( board , self . p1 . get_sym ( ) , roll ) ) [ 0 ]
roll = ( random . randrange ( 1 , 7 ) , random . randrange ( 1 , 7 ) )
board = Board . flip ( eval_bot . make_move ( Board . flip ( board ) , self . p1 . get_sym ( ) , roll ) [ 0 ] )
sys . stderr . write ( " \t outcome {} " . format ( Board . outcome ( board ) [ 1 ] ) )
outcomes . append ( Board . outcome ( board ) [ 1 ] )
sys . stderr . write ( " \n " )
if i % 50 == 0 :
print_time_estimate ( i )
"""
return outcomes
else :
sys . stderr . write ( " [EVAL ] Evaluation method ' {} ' is not defined \n " . format ( method ) )
return [ 0 ]
2018-03-27 11:02:36 +00:00
if tf_session == None :
2018-03-27 23:13:59 +00:00
with tf . Session ( ) as session :
2018-03-27 11:02:36 +00:00
session . run ( tf . global_variables_initializer ( ) )
self . restore_model ( session )
outcomes = [ ( method , do_eval ( session ,
method ,
episode_count ,
trained_eps = trained_eps ) )
for method
in self . config [ ' eval_methods ' ] ]
return outcomes
else :
outcomes = [ ( method , do_eval ( tf_session ,
method ,
episode_count ,
trained_eps = trained_eps ) )
for method
in self . config [ ' eval_methods ' ] ]
return outcomes
2018-03-27 00:26:15 +00:00
def train_model ( self , episodes = 1000 , save_step_size = 100 , trained_eps = 0 ) :
2018-03-22 14:30:47 +00:00
with tf . Session ( ) as sess :
writer = tf . summary . FileWriter ( " /tmp/log/tf " , sess . graph )
2018-03-27 00:26:15 +00:00
2018-03-22 14:30:47 +00:00
sess . run ( tf . global_variables_initializer ( ) )
self . restore_model ( sess )
2018-03-27 00:26:15 +00:00
2018-03-22 14:30:47 +00:00
variables_names = [ v . name for v in tf . trainable_variables ( ) ]
values = sess . run ( variables_names )
for k , v in zip ( variables_names , values ) :
print ( " Variable: " , k )
print ( " Shape: " , v . shape )
print ( v )
start_time = time . time ( )
2018-03-20 12:03:21 +00:00
2018-03-22 14:30:47 +00:00
def print_time_estimate ( eps_completed ) :
2018-03-27 00:26:15 +00:00
cur_time = time . time ( )
time_diff = cur_time - start_time
eps_per_sec = eps_completed / time_diff
secs_per_ep = time_diff / eps_completed
2018-03-22 14:30:47 +00:00
eps_remaining = ( episodes - eps_completed )
2018-03-27 00:26:15 +00:00
sys . stderr . write (
" [TRAIN] Averaging {per_sec} episodes per second \n " . format ( per_sec = round ( eps_per_sec , 2 ) ) )
sys . stderr . write (
" [TRAIN] {eps_remaining} episodes remaining; approx. {time_remaining} seconds remaining \n " . format (
eps_remaining = eps_remaining , time_remaining = int ( eps_remaining * secs_per_ep ) ) )
2018-03-20 12:03:21 +00:00
2018-03-22 14:30:47 +00:00
sys . stderr . write ( " [TRAIN] Training {} episodes and save_step_size {} \n " . format ( episodes , save_step_size ) )
outcomes = [ ]
for episode in range ( 1 , episodes + 1 ) :
sys . stderr . write ( " [TRAIN] Episode {} " . format ( episode + trained_eps ) )
# TODO decide which player should be here
2018-03-27 00:26:15 +00:00
2018-03-22 14:30:47 +00:00
player = 1
2018-03-27 00:26:15 +00:00
prev_board = Board . initial_state
2018-03-22 14:30:47 +00:00
# find the best move here, make this move, then change turn as the
# first thing inside of the while loop and then call
# best_move_and_score to get V_t+1
2018-03-28 12:36:52 +00:00
i = 0
2018-03-22 14:30:47 +00:00
while Board . outcome ( prev_board ) is None :
2018-03-28 12:36:52 +00:00
i + = 1
2018-03-20 12:03:21 +00:00
2018-03-27 00:26:15 +00:00
#print("PREEEV_BOOOOAAARD:",prev_board)
cur_board , cur_board_value = self . make_move ( sess ,
prev_board ,
( random . randrange ( 1 , 7 ) , random . randrange ( 1 , 7 ) ) , player )
2018-03-28 12:36:52 +00:00
2018-03-27 00:26:15 +00:00
#print("The current value:",cur_board_value)
2018-03-20 12:03:21 +00:00
2018-03-22 14:30:47 +00:00
# adjust weights
sess . run ( self . training_op ,
2018-03-28 10:00:47 +00:00
feed_dict = { self . x : self . board_trans_func ( prev_board , player ) ,
2018-03-27 00:26:15 +00:00
self . value_next : cur_board_value } )
player * = - 1
2018-03-22 14:30:47 +00:00
prev_board = cur_board
final_board = prev_board
2018-03-28 12:36:52 +00:00
sys . stderr . write ( " \t outcome {} \t turns {} " . format ( Board . outcome ( final_board ) [ 1 ] , i ) )
2018-03-22 14:30:47 +00:00
outcomes . append ( Board . outcome ( final_board ) [ 1 ] )
2018-03-27 00:26:15 +00:00
final_score = np . array ( [ Board . outcome ( final_board ) [ 1 ] ] )
2018-03-22 14:30:47 +00:00
scaled_final_score = ( ( final_score + 2 ) / 4 )
2018-03-27 00:26:15 +00:00
#print("The difference in values:", scaled_final_score - cur_board_value)
2018-03-22 14:30:47 +00:00
# print("scaled_final_score",scaled_final_score)
with tf . name_scope ( " final " ) :
merged = tf . summary . merge_all ( )
summary , _ = sess . run ( [ merged , self . training_op ] ,
2018-03-28 10:00:47 +00:00
feed_dict = { self . x : self . board_trans_func ( prev_board , player ) ,
2018-03-27 00:26:15 +00:00
self . value_next : scaled_final_score . reshape ( ( 1 , 1 ) ) } )
2018-03-22 14:30:47 +00:00
writer . add_summary ( summary , episode + trained_eps )
2018-03-27 00:26:15 +00:00
2018-03-22 14:30:47 +00:00
sys . stderr . write ( " \n " )
2018-03-27 00:26:15 +00:00
2018-03-22 14:30:47 +00:00
if episode % min ( save_step_size , episodes ) == 0 :
sys . stderr . write ( " [TRAIN] Saving model... \n " )
2018-03-27 00:26:15 +00:00
self . save_model ( sess , episode + trained_eps )
2018-03-20 12:03:21 +00:00
2018-03-22 14:30:47 +00:00
if episode % 50 == 0 :
print_time_estimate ( episode )
2018-03-20 12:03:21 +00:00
2018-03-22 14:30:47 +00:00
sys . stderr . write ( " [TRAIN] Saving model for final episode... \n " )
self . save_model ( sess , episode + trained_eps )
writer . close ( )
2018-03-20 12:03:21 +00:00
2018-03-22 14:30:47 +00:00
return outcomes
2018-03-04 16:35:36 +00:00
# take turn, which finds the best state and picks it, based on the current network
# save current state
# run training operation (session.run(self.training_op, {x:x, value_next, value_next})), (something which does the backprop, based on the state after having taken a turn, found before, and the state we saved in the beginning and from now we'll save it at the end of the turn
# save the current state again, so we can continue running backprop based on the "previous" turn.
# NOTE: We need to make a method so that we can take a single turn or at least just pick the next best move, so we know how to evaluate according to TD-learning. Right now, our game just continues in a while loop without nothing to stop it!