2018-03-04 16:35:36 +00:00
import tensorflow as tf
from cup import Cup
import numpy as np
from board import Board
import os
2018-03-20 12:03:21 +00:00
import time
import sys
import random
2018-03-20 12:17:38 +00:00
from eval import Eval
2018-03-20 12:03:21 +00:00
2018-03-08 15:27:16 +00:00
class Network :
2018-03-04 16:35:36 +00:00
hidden_size = 40
2018-03-20 16:29:29 +00:00
input_size = 196
2018-03-04 16:35:36 +00:00
output_size = 1
# Can't remember the best learning_rate, look this up
2018-03-07 13:44:17 +00:00
learning_rate = 0.1
2018-02-07 14:31:05 +00:00
2018-03-04 16:35:36 +00:00
# TODO: Actually compile tensorflow properly
2018-03-06 11:04:56 +00:00
#os.environ["TF_CPP_MIN_LOG_LEVEL"]="2"
2018-03-06 11:19:04 +00:00
def custom_tanh ( self , x , name = None ) :
2018-03-14 19:42:09 +00:00
return tf . scalar_mul ( tf . constant ( 2.00 ) , tf . tanh ( x , name ) )
2018-03-04 16:35:36 +00:00
2018-03-20 12:03:21 +00:00
def __init__ ( self , config , name ) :
2018-03-08 15:27:16 +00:00
self . config = config
2018-03-20 12:03:21 +00:00
self . session = tf . Session ( )
2018-03-08 15:27:16 +00:00
self . checkpoint_path = config [ ' model_path ' ]
2018-03-14 19:42:09 +00:00
self . name = name
2018-03-08 15:27:16 +00:00
2018-03-04 16:35:36 +00:00
# input = x
2018-03-08 15:27:16 +00:00
self . x = tf . placeholder ( ' float ' , [ 1 , Network . input_size ] , name = ' x ' )
self . value_next = tf . placeholder ( ' float ' , [ 1 , Network . output_size ] , name = " value_next " )
2018-03-04 16:35:36 +00:00
xavier_init = tf . contrib . layers . xavier_initializer ( )
2018-03-14 19:42:09 +00:00
W_1 = tf . get_variable ( " w_1 " , ( Network . input_size , Network . hidden_size ) ,
initializer = xavier_init )
W_2 = tf . get_variable ( " w_2 " , ( Network . hidden_size , Network . output_size ) ,
initializer = xavier_init )
2018-03-04 16:35:36 +00:00
2018-03-14 19:42:09 +00:00
b_1 = tf . get_variable ( " b_1 " , ( Network . hidden_size , ) ,
initializer = tf . zeros_initializer )
b_2 = tf . get_variable ( " b_2 " , ( Network . output_size , ) ,
initializer = tf . zeros_initializer )
2018-03-04 16:35:36 +00:00
2018-03-20 16:29:29 +00:00
value_after_input = tf . sigmoid ( tf . matmul ( self . x , W_1 ) + b_1 , name = ' hidden_layer ' )
2018-03-04 16:35:36 +00:00
2018-03-20 16:29:29 +00:00
self . value = tf . sigmoid ( tf . matmul ( value_after_input , W_2 ) + b_2 , name = ' output_layer ' )
2018-03-04 16:35:36 +00:00
2018-03-14 19:42:09 +00:00
# tf.reduce_sum basically finds the sum of its input, so this gives the
# difference between the two values, in case they should be lists, which
# they might be if our input changes
2018-03-20 12:03:21 +00:00
# TODO: Alexander thinks that self.value will be computed twice (instead of once)
2018-03-20 16:29:29 +00:00
difference_in_values = tf . reduce_sum ( tf . subtract ( self . value_next , self . value , name = ' difference ' ) )
2018-03-04 16:35:36 +00:00
trainable_vars = tf . trainable_variables ( )
gradients = tf . gradients ( self . value , trainable_vars )
apply_gradients = [ ]
with tf . variable_scope ( ' apply_gradients ' ) :
for gradient , trainable_var in zip ( gradients , trainable_vars ) :
# Hopefully this is Δw_t = α (V_t+1 - V_t)▿_wV_t.
2018-03-08 15:27:16 +00:00
backprop_calc = Network . learning_rate * difference_in_values * gradient
2018-03-04 16:35:36 +00:00
grad_apply = trainable_var . assign_add ( backprop_calc )
apply_gradients . append ( grad_apply )
self . training_op = tf . group ( * apply_gradients , name = ' training_op ' )
self . saver = tf . train . Saver ( max_to_keep = 1 )
self . session . run ( tf . global_variables_initializer ( ) )
2018-03-20 12:03:21 +00:00
self . restore_model ( )
2018-02-07 14:31:05 +00:00
def eval_state ( self , state ) :
# Run state through a network
2018-03-04 16:35:36 +00:00
2018-03-14 19:42:09 +00:00
# Remember to create placeholders for everything because wtf tensorflow
# and graphs
2018-03-04 16:35:36 +00:00
# Remember to create the dense layers
2018-03-14 19:42:09 +00:00
# Figure out a way of giving a layer a custom activiation function (we
# want something which gives [-2,2]. Naively tahn*2, however I fell this
# is wrong.
# tf.group, groups a bunch of actions, so calculate the different
# gradients for the different weights, by using tf.trainable_variables()
# to find all variables and tf.gradients(current_value,
# trainable_variables) to find all the gradients. We can then loop
# through this and calculate the trace for each gradient and variable
# pair (note, zip can be used to combine the two lists found before),
# and then we can calculate the overall change in weights, based on the
# formula listed in tesauro (learning_rate * difference_in_values *
# trace), this calculation can be assigned to a tf variable and put in a
# list and then this can be grouped into a single operation, essentially
# building our own backprop function.
# Grouping them is done by
# tf.group(*the_gradients_from_before_we_want_to_apply,
# name="training_op")
# If we remove the eligibily trace to begin with, we only have to
# implement learning_rate * (difference_in_values) * gradients (the
# before-mentioned calculation.
2018-03-04 16:35:36 +00:00
2018-03-14 19:42:09 +00:00
# print("Network is evaluating")
2018-03-04 16:35:36 +00:00
val = self . session . run ( self . value , feed_dict = { self . x : state } )
2018-03-14 19:42:09 +00:00
#print("eval ({})".format(self.name), state, val, sep="\n")
2018-03-04 16:35:36 +00:00
return val
2018-03-09 23:22:20 +00:00
def save_model ( self , episode_count ) :
2018-03-08 15:27:16 +00:00
self . saver . save ( self . session , os . path . join ( self . checkpoint_path , ' model.ckpt ' ) )
2018-03-11 23:11:55 +00:00
with open ( os . path . join ( self . checkpoint_path , " episodes_trained " ) , ' w+ ' ) as f :
2018-03-14 19:42:09 +00:00
print ( " [NETWK] ( {name} ) Saving model to: " . format ( name = self . name ) ,
os . path . join ( self . checkpoint_path , ' model.ckpt ' ) )
2018-03-09 23:22:20 +00:00
f . write ( str ( episode_count ) + " \n " )
2018-03-04 16:35:36 +00:00
def restore_model ( self ) :
2018-03-14 19:42:09 +00:00
if os . path . isfile ( os . path . join ( self . checkpoint_path , ' model.ckpt.index ' ) ) :
2018-03-06 10:53:42 +00:00
latest_checkpoint = tf . train . latest_checkpoint ( self . checkpoint_path )
2018-03-14 19:42:09 +00:00
print ( " [NETWK] ( {name} ) Restoring model from: " . format ( name = self . name ) ,
str ( latest_checkpoint ) )
2018-03-06 10:53:42 +00:00
self . saver . restore ( self . session , latest_checkpoint )
2018-03-20 12:03:21 +00:00
variables_names = [ v . name for v in tf . trainable_variables ( ) ]
values = self . session . run ( variables_names )
for k , v in zip ( variables_names , values ) :
print ( " Variable: " , k )
print ( " Shape: " , v . shape )
print ( v )
# Restore trained episode count for model
episode_count_path = os . path . join ( self . checkpoint_path , " episodes_trained " )
if os . path . isfile ( episode_count_path ) :
with open ( episode_count_path , ' r ' ) as f :
self . config [ ' start_episode ' ] = int ( f . read ( ) )
2018-03-04 16:35:36 +00:00
# Have a circular dependency, #fuck, need to rewrite something
2018-03-20 12:03:21 +00:00
def adjust_weights ( self , board , v_next ) :
2018-03-04 16:35:36 +00:00
# print("lol")
2018-03-20 16:29:29 +00:00
board = np . array ( board ) . reshape ( ( 1 , - 1 ) )
2018-03-20 12:03:21 +00:00
self . session . run ( self . training_op , feed_dict = { self . x : board ,
self . value_next : v_next } )
2018-03-04 16:35:36 +00:00
# while game isn't done:
#x_next = g.next_move()
#value_next = network.eval_state(x_next)
#self.session.run(self.training_op, feed_dict={self.x: x, self.value_next: value_next})
#x = x_next
2018-03-20 12:03:21 +00:00
def make_move ( self , board , roll ) :
# print(Board.pretty(board))
legal_moves = Board . calculate_legal_states ( board , 1 , roll )
2018-03-20 16:29:29 +00:00
moves_and_scores = [ ( move , self . eval_state ( np . array ( Board . map_to_tesauro ( move ) ) . reshape ( 1 , - 1 ) ) ) for move in legal_moves ]
2018-03-20 12:03:21 +00:00
scores = [ x [ 1 ] for x in moves_and_scores ]
best_score_index = np . array ( scores ) . argmax ( )
best_move_pair = moves_and_scores [ best_score_index ]
#print("Found the best state, being:", np.array(move_scores).argmax())
return best_move_pair
def train_model ( self , episodes = 1000 , save_step_size = 100 , trained_eps = 0 ) :
start_time = time . time ( )
def print_time_estimate ( eps_completed ) :
cur_time = time . time ( )
time_diff = cur_time - start_time
eps_per_sec = eps_completed / time_diff
secs_per_ep = time_diff / eps_completed
eps_remaining = ( episodes - eps_completed )
sys . stderr . write ( " [TRAIN] Averaging {per_sec} episodes per second \n " . format ( per_sec = round ( eps_per_sec , 2 ) ) )
sys . stderr . write ( " [TRAIN] {eps_remaining} episodes remaining; approx. {time_remaining} seconds remaining \n " . format ( eps_remaining = eps_remaining , time_remaining = int ( eps_remaining * secs_per_ep ) ) )
sys . stderr . write ( " [TRAIN] Training {} episodes and save_step_size {} \n " . format ( episodes , save_step_size ) )
outcomes = [ ]
for episode in range ( 1 , episodes + 1 ) :
sys . stderr . write ( " [TRAIN] Episode {} " . format ( episode + trained_eps ) )
2018-03-20 16:29:29 +00:00
# print("greerggeregr"*10000)
2018-03-20 12:03:21 +00:00
# TODO decide which player should be here
player = 1
roll = ( random . randrange ( 1 , 7 ) , random . randrange ( 1 , 7 ) )
2018-03-20 16:29:29 +00:00
def tesaurofi ( board ) :
return Board . map_to_tesauro ( board )
2018-03-20 12:03:21 +00:00
prev_board , _ = self . make_move ( Board . flip ( Board . initial_state ) if player == - 1 else Board . initial_state , roll )
2018-03-20 16:29:29 +00:00
2018-03-20 12:03:21 +00:00
if player == - 1 :
prev_board = Board . flip ( prev_board )
2018-03-20 16:29:29 +00:00
# print("board:",prev_board)
# print(len(prev_board))
2018-03-20 12:03:21 +00:00
# find the best move here, make this move, then change turn as the
# first thing inside of the while loop and then call
# best_move_and_score to get V_t+1
# i = 0
while Board . outcome ( prev_board ) is None :
2018-03-20 16:29:29 +00:00
#print(prev_board)
2018-03-20 12:03:21 +00:00
# print("-"*30)
# print(i)
# print(roll)
# print(Board.pretty(prev_board))
# print("/"*30)
# i += 1
player * = - 1
roll = ( random . randrange ( 1 , 7 ) , random . randrange ( 1 , 7 ) )
cur_board , cur_board_value = self . make_move ( Board . flip ( prev_board ) if player == - 1 else prev_board , roll )
2018-03-20 16:29:29 +00:00
#print("pls",cur_board_value)
2018-03-20 12:03:21 +00:00
if player == - 1 :
cur_board = Board . flip ( cur_board )
2018-03-20 16:29:29 +00:00
self . adjust_weights ( tesaurofi ( prev_board ) , cur_board_value )
2018-03-20 12:03:21 +00:00
prev_board = cur_board
final_board = prev_board
sys . stderr . write ( " \t outcome {} " . format ( Board . outcome ( final_board ) [ 1 ] ) )
outcomes . append ( Board . outcome ( final_board ) [ 1 ] )
final_score = np . array ( [ Board . outcome ( final_board ) [ 1 ] ] )
2018-03-20 16:29:29 +00:00
self . adjust_weights ( tesaurofi ( prev_board ) , final_score . reshape ( ( 1 , 1 ) ) )
2018-03-20 12:03:21 +00:00
sys . stderr . write ( " \n " )
if episode % min ( save_step_size , episodes ) == 0 :
sys . stderr . write ( " [TRAIN] Saving model... \n " )
self . save_model ( episode + trained_eps )
if episode % 50 == 0 :
print_time_estimate ( episode )
sys . stderr . write ( " [TRAIN] Saving model for final episode... \n " )
self . save_model ( episode + trained_eps )
return outcomes
2018-03-04 16:35:36 +00:00
# take turn, which finds the best state and picks it, based on the current network
# save current state
# run training operation (session.run(self.training_op, {x:x, value_next, value_next})), (something which does the backprop, based on the state after having taken a turn, found before, and the state we saved in the beginning and from now we'll save it at the end of the turn
# save the current state again, so we can continue running backprop based on the "previous" turn.
# NOTE: We need to make a method so that we can take a single turn or at least just pick the next best move, so we know how to evaluate according to TD-learning. Right now, our game just continues in a while loop without nothing to stop it!
2018-03-20 12:17:38 +00:00
def eval ( self , trained_eps = 0 ) :
def do_eval ( method , episodes = 1000 , trained_eps = 0 ) :
start_time = time . time ( )
def print_time_estimate ( eps_completed ) :
cur_time = time . time ( )
time_diff = cur_time - start_time
eps_per_sec = eps_completed / time_diff
secs_per_ep = time_diff / eps_completed
eps_remaining = ( episodes - eps_completed )
sys . stderr . write ( " [EVAL ] Averaging {per_sec} episodes per second \n " . format ( per_sec = round ( eps_per_sec , 2 ) ) )
sys . stderr . write ( " [EVAL ] {eps_remaining} episodes remaining; approx. {time_remaining} seconds remaining \n " . format ( eps_remaining = eps_remaining , time_remaining = int ( eps_remaining * secs_per_ep ) ) )
sys . stderr . write ( " [EVAL ] Evaluating {eps} episode(s) with method ' {method} ' \n " . format ( eps = episodes , method = method ) )
if method == ' random ' :
outcomes = [ ]
for i in range ( 1 , episodes + 1 ) :
sys . stderr . write ( " [EVAL ] Episode {} " . format ( i ) )
board = Board . initial_state
while Board . outcome ( board ) is None :
roll = ( random . randrange ( 1 , 7 ) , random . randrange ( 1 , 7 ) )
board = ( self . p1 . make_move ( board , self . p1 . get_sym ( ) , roll ) ) [ 0 ]
roll = ( random . randrange ( 1 , 7 ) , random . randrange ( 1 , 7 ) )
board = Board . flip ( Eval . make_random_move ( Board . flip ( board ) , 1 , roll ) )
sys . stderr . write ( " \t outcome {} " . format ( Board . outcome ( board ) [ 1 ] ) )
outcomes . append ( Board . outcome ( board ) [ 1 ] )
sys . stderr . write ( " \n " )
if i % 50 == 0 :
print_time_estimate ( i )
return outcomes
elif method == ' pubeval ' :
outcomes = [ ]
# Add the evaluation code for pubeval, the bot has a method make_pubeval_move(board, sym, roll), which can be used to get the best move according to pubeval
for i in range ( 1 , episodes + 1 ) :
sys . stderr . write ( " [EVAL ] Episode {} " . format ( i ) )
board = Board . initial_state
#print("init:", board, sep="\n")
while Board . outcome ( board ) is None :
#print("-"*30)
roll = ( random . randrange ( 1 , 7 ) , random . randrange ( 1 , 7 ) )
#print(roll)
prev_board = tuple ( board )
board = ( self . make_move ( board , roll ) ) [ 0 ]
#print("post p1:", board, sep="\n")
#print("."*30)
roll = ( random . randrange ( 1 , 7 ) , random . randrange ( 1 , 7 ) )
#print(roll)
prev_board = tuple ( board )
board = Eval . make_pubeval_move ( board , - 1 , roll ) [ 0 ] [ 0 : 26 ]
#print("post pubeval:", board, sep="\n")
#print("*"*30)
#print(board)
#print("+"*30)
sys . stderr . write ( " \t outcome {} " . format ( Board . outcome ( board ) [ 1 ] ) )
outcomes . append ( Board . outcome ( board ) [ 1 ] )
sys . stderr . write ( " \n " )
if i % 10 == 0 :
print_time_estimate ( i )
return outcomes
# elif method == 'dumbmodel':
# config_prime = self.config.copy()
# config_prime['model_path'] = os.path.join(config_prime['model_storage_path'], 'dumbmodel')
# eval_bot = Bot(1, config = config_prime, name = "dumbmodel")
# #print(self.config, "\n", config_prime)
# outcomes = []
# for i in range(1, episodes + 1):
# sys.stderr.write("[EVAL ] Episode {}".format(i))
# board = Board.initial_state
# while Board.outcome(board) is None:
# roll = (random.randrange(1,7), random.randrange(1,7))
# board = (self.make_move(board, self.p1.get_sym(), roll))[0]
# roll = (random.randrange(1,7), random.randrange(1,7))
# board = Board.flip(eval_bot.make_move(Board.flip(board), self.p1.get_sym(), roll)[0])
# sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
# outcomes.append(Board.outcome(board)[1])
# sys.stderr.write("\n")
# if i % 50 == 0:
# print_time_estimate(i)
# return outcomes
else :
sys . stderr . write ( " [EVAL ] Evaluation method ' {} ' is not defined \n " . format ( method ) )
return [ 0 ]
return [ ( method , do_eval ( method ,
self . config [ ' episode_count ' ] ,
trained_eps = trained_eps ) )
for method
in self . config [ ' eval_methods ' ] ]