backgammon/bot.py

58 lines
1.6 KiB
Python
Raw Normal View History

from cup import Cup
2018-03-04 16:35:36 +00:00
import tensorflow as tf
from network import Network
import numpy as np
2018-02-13 13:38:49 +00:00
from board import Board
import random
class Bot:
2018-03-08 15:27:16 +00:00
def __init__(self, sym, config = None):
self.config = config
self.cup = Cup()
self.sym = sym
2018-03-04 16:35:36 +00:00
self.graph = tf.Graph()
with self.graph.as_default():
self.session = tf.Session()
2018-03-08 15:27:16 +00:00
self.network = Network(self.session, config)
2018-03-06 15:23:08 +00:00
self.network.restore_model()
2018-03-04 16:35:36 +00:00
def roll(self):
print("{} rolled: ".format(self.sym))
roll = self.cup.roll()
2018-03-06 15:23:08 +00:00
# print(roll)
return roll
def switch(self,cur):
return -1 if cur == 1 else 1
def restore_model(self):
with self.graph.as_default():
self.network.restore_model()
2018-03-04 16:35:36 +00:00
def get_session(self):
return self.session
def get_sym(self):
return self.sym
2018-03-04 16:35:36 +00:00
def get_network(self):
return self.network
def make_random_move(self, board, sym, roll):
legal_moves = Board.calculate_legal_states(board, sym, roll)
return random.choice(list(legal_moves))
def make_move(self, board, sym, roll):
# print(Board.pretty(board))
legal_moves = Board.calculate_legal_states(board, sym, roll)
2018-03-06 12:04:47 +00:00
moves_and_scores = [ (move, self.network.eval_state(np.array(move).reshape(1,26))) for move in legal_moves ]
scores = [ x[1] for x in moves_and_scores ]
2018-03-06 12:08:01 +00:00
best_move_pair = moves_and_scores[np.array(scores).argmax()]
2018-03-06 12:04:47 +00:00
#print("Found the best state, being:", np.array(move_scores).argmax())
2018-03-06 12:08:01 +00:00
return best_move_pair