advancedskrald/runner.py
2019-04-04 12:59:37 +02:00

439 lines
14 KiB
Python

import cv2
import numpy as np
import glob
import os
from sklearn import cluster
from sklearn import metrics
from sklearn import svm
from sklearn.externals import joblib
from sklearn import neural_network
import heapq
from datetime import datetime
import utils
pieces = ["rook", "knight"]
colors = ['black', 'white']
def selective_search(image, use_fast=False, use_slow=False, image_name = None):
# speed-up using multithreads
cv2.setUseOptimized(True)
cv2.setNumThreads(4)
im = image
img_out = im.copy()
# create Selective Search Segmentation Object using default parameters
ss = cv2.ximgproc.segmentation.createSelectiveSearchSegmentation()
# set input image on which we will run segmentation
ss.setBaseImage(im)
ss.switchToSingleStrategy()
if (use_fast):
ss.switchToSelectiveSearchFast()
elif (use_slow):
ss.switchToSelectiveSearchQuality()
# run selective search segmentation on input image
rects = ss.process()
# number of region proposals to show
numShowRects = 150
best_proposals = []
while True:
# create a copy of original image
# itereate over all the region proposals
for i, rect in enumerate(rects):
imOut = im.copy()
# draw rectangle for region proposal till numShowRects
if (i < numShowRects):
x, y, w, h = rect
top_left = (x,y)
bottom_left = (x, y+h)
top_right = (x+w, y)
bottom_right = (x+w, y+h)
rect_width = bottom_right[0] - bottom_left[0]
rect_height = bottom_right[1] - top_right[1]
size = rect_width * rect_height
best_proposals.append((rect, size))
else:
break
height, width, channels = im.shape
center_x = width // 2
center_y = (height // 2)+5
dists = []
for i in heapq.nlargest(10, best_proposals, key=lambda x: x[1]):
width, height, channels = im.shape
x, y, w, h = i[0]
if i[1] < (width*height)*0.90 and i[1] > (width*height)*0.25:
top_left = (x,y)
bottom_left = (x, y+h)
top_right = (x+w, y)
bottom_right = (x+w, y+h)
box_center_x = (top_left[0]+bottom_left[0]+top_right[0]+bottom_right[0]) // 4
box_center_y = (top_left[1]+bottom_left[1]+top_right[1]+bottom_right[1]) // 4
dist = (center_x - box_center_x) ** 2 + (center_y - box_center_y) ** 2
dists.append([i, dist])
imCop = imOut.copy()
print(image_name)
best = heapq.nsmallest(1, dists, key=lambda x: x[1])
x, y, w, h = best[0][0][0]
cv2.rectangle(imCop, (x, y), (x + w, y + h), (0, 255, 0), 4, cv2.LINE_AA)
top_left = (x, y)
bottom_right = (x + w, y + h)
cropped = img_out[top_left[1]:bottom_right[1], top_left[0]:bottom_right[0]]
return cropped
# show output
cv2.imshow("Output", imOut)
# record key press
k = cv2.waitKey(0) & 0xFF
# m is pressed
if k == 109:
# increase total number of rectangles to show by increment
numShowRects += increment
# l is pressed
elif k == 108 and numShowRects > increment:
# decrease total number of rectangles to show by increment
numShowRects -= increment
# q is pressed
elif k == 113:
break
# close image show window
cv2.destroyAllWindows()
def generate_centers(number_of_clusters, sift : cv2.xfeatures2d_SIFT):
features = None
for piece in pieces:
for color in colors:
for filename in glob.glob(os.path.join("training_images", piece, f"{color}_square", "*.png")):
image = cv2.imread(filename)
#image = selective_search(image, use_fast=True)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
kp, desc = sift.detectAndCompute(gray, None)
if features is None:
features = np.array(desc)
else:
print(f"{piece}, {color}, {filename}")
features = np.vstack((features, desc))
k_means = cluster.KMeans(number_of_clusters)
k_means.fit(features)
return k_means.cluster_centers_
def generate_bag_of_words(image, centers, sift : cv2.xfeatures2d_SIFT):
num_centers = centers.shape[0]
histogram = np.zeros((1, num_centers))
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
kp, desc = sift.detectAndCompute(gray_image, None)
if not kp:
return histogram
distances = metrics.pairwise.pairwise_distances(desc, centers)
best_centers = np.argmin(distances, axis=1)
for i in best_centers:
histogram[0,i] = histogram[0,i] + 1
histogram = histogram / np.sum(histogram)
return histogram
def do_pre_processing():
sift = cv2.xfeatures2d.SIFT_create()
centers = generate_centers(8, sift)
np.save("training_data/centers", centers)
for piece in pieces:
for color in colors:
for filename in glob.glob(os.path.join("training_images", piece, f"{color}_square", "*.png")):
image = cv2.imread(filename)
#image = selective_search(image, image_name=filename, use_fast=True)
bow_features = generate_bag_of_words(image, centers, sift)
np.save(f"training_data/{piece}/{color}_square/" + os.path.basename(filename), bow_features)
def load_training_data(spec_piece, color):
X = None
Y = None
for piece in pieces:
piece_class = int(spec_piece == piece)
for filename in glob.glob(os.path.join("training_data", piece, f"{color}_square", "*.npy")):
data = np.load(filename)
if X is None:
X = np.array(data)
Y = np.array([piece_class])
else:
X = np.vstack((X, data))
Y = np.vstack((Y, [piece_class]))
return X, Y
def train_empty_or_piece_var():
pieces = ['empty', 'knight', 'rook']
for color in colors:
X = None
Y = None
total_weight = 0
for piece in pieces:
total_weight += len(glob.glob(os.path.join("training_images", f"{piece}", f"{color}_square", "*.png")))
current_weight = len(glob.glob(os.path.join("training_images", 'empty', f"{color}_square", "*.png")))
for piece in pieces:
piece_class = int('empty' == piece)
for filename in glob.glob(os.path.join("training_images", piece, f"{color}_square", "*.png")):
img = cv2.imread(filename)
magnitude_of_var = np.linalg.norm(cv2.meanStdDev(img)[1])
if X is None:
X = np.array(magnitude_of_var)
Y = np.array([piece_class])
else:
X = np.vstack((X, magnitude_of_var))
Y = np.vstack((Y, [piece_class]))
classifier = svm.SVC(class_weight={0: current_weight, 1: total_weight - current_weight}, probability=True)
classifier.fit(X, Y)
joblib.dump(classifier, f"classifiers/classifier_empty_var/{color}.pkl")
def train_pieces_svm():
for piece in pieces:
for color in colors:
# TODO: Consider removing empty from total_weights, so all classifiers do not consider empty pieces
total_weights = len(glob.glob(os.path.join("training_images", "*", f"{color}_square", "*.png")))
current_weight = len(glob.glob(os.path.join("training_images", piece, f"{color}_square", "*.png")))
print(f"Trainig for piece: {piece}")
X, Y = load_training_data(piece, color)
classifier = svm.SVC(class_weight={0: current_weight, 1: total_weights - current_weight}, probability=True)
classifier.fit(X, Y)
joblib.dump(classifier, f"classifiers/classifier_{piece}/{color}.pkl")
def compute_features(training_image):
sift = cv2.xfeatures2d.SIFT_create()
gray_training_image = cv2.cvtColor(training_image, cv2.COLOR_BGR2GRAY)
kp = sift.detect(gray_training_image)
kp, desc = sift.compute(gray_training_image, kp)
cv2.drawKeypoints(training_image, kp, training_image)
return training_image
def warp_board(camera_image, debug_image=None):
#cv2.imwrite('camera_image.png', camera_image)
baseline = cv2.imread("new_baseline_board.png")
camera_image_gray = cv2.cvtColor(camera_image, cv2.COLOR_BGR2GRAY)
baseline_gray = cv2.cvtColor(baseline, cv2.COLOR_BGR2GRAY)
sift = cv2.xfeatures2d.SIFT_create()
camera_image_keypoints = sift.detect(camera_image_gray, None)
baseline_keypoints = sift.detect(baseline_gray, None)
camera_image_keypoints, des = sift.compute(camera_image_gray, camera_image_keypoints)
baseline_keypoints, des2 = sift.compute(baseline_gray, baseline_keypoints)
if debug_image is not None:
cv2.drawKeypoints(camera_image, keypoints=camera_image_keypoints, outImage=debug_image)
cv2.imwrite('keypoints_img.jpg', camera_image)
# FLANN parameters
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=8)
search_params = dict(checks=100) # or pass empty dictionary
flann = cv2.FlannBasedMatcher(index_params,search_params)
matches = flann.knnMatch(des, des2, k=2)
# Need to draw only good matches, so create a mask
matchesMask = [[0,0] for i in range(len(matches))]
good_matches = []
# ratio test as per Lowe's paper
for i,(m,n) in enumerate(matches):
if m.distance < 0.55*n.distance:
matchesMask[i]=[1,0]
good_matches.append([m,n])
draw_params = dict(matchColor=(0,255,0),
singlePointColor=(255,0,0),
matchesMask=matchesMask,
flags=0)
img3 = cv2.drawMatchesKnn(camera_image,
camera_image_keypoints,
baseline,
baseline_keypoints,
matches,
None,
**draw_params)
cv2.imwrite("matches.jpg", img3)
# Extract location of good matches
points1 = np.zeros((len(good_matches), 2), dtype=np.float32)
points2 = np.zeros((len(good_matches), 2), dtype=np.float32)
for i, (m, n) in enumerate(good_matches):
points1[i, :] = camera_image_keypoints[m.queryIdx].pt
points2[i, :] = baseline_keypoints[m.trainIdx].pt
# print(len(points2))
h, mask = cv2.findHomography(points1, points2, cv2.RANSAC)
height, width, channels = baseline.shape
im1Reg = cv2.warpPerspective(camera_image, h, (width, height))
# cv2.imwrite('homo_pls_fuck.jpg', im1Reg)
return im1Reg
def get_square(warped_board, file, rank):
files = "ABCDEFGH"
file = files.index(file)
rank = 8 - rank
width, _, _ = warped_board.shape # board is square anyway
side = int(width * 0.04)
size = width - 2 * side
square_size = size // 8
padding = 0
x1 = side + (square_size * file)
x2 = x1 + square_size
y1 = max(0, side + (square_size * rank) - padding)
y2 = min(width, y1 + square_size + padding)
square = warped_board[y1:y2, x1:x2]
return square
def get_squares(warped_board):
result = {}
for file in "ABCDEFGH":
for rank in range(1, 9):
square = get_square(warped_board, file, rank)
result[f"{file}{rank}"] = square
# cv2.imwrite(f"warped_square_{file}{rank}.png", square)
return result
def load_data_nn(spec_piece):
X = None
Y = None
for piece in pieces:
piece_class = int(spec_piece == piece)
for filename in glob.glob(os.path.join("training_images", piece, "*", "*.png")):
image = cv2.imread(filename)
image = cv2.resize(image, (64, 128))
data = np.reshape(image, (1, np.product(image.shape)))
if X is None:
if piece_class == 1:
for _ in range(10):
X = np.array(data)
Y = np.array([piece_class])
else:
X = np.array(data)
Y = np.array([piece_class])
else:
if piece_class == 1:
for _ in range(10):
X = np.vstack((X, data))
Y = np.vstack((Y, [piece_class]))
else:
X = np.vstack((X, data))
Y = np.vstack((Y, [piece_class]))
return (X, Y)
def train_nn():
for piece in pieces:
X, Y = load_data_nn(piece)
classifier = neural_network.MLPClassifier(hidden_layer_sizes=64)
classifier.fit(X, Y)
joblib.dump(classifier, "classifiers/neural_net_" + piece + ".pkl")
def letter_to_int(letter):
alphabet = list('ABCDEFGH')
return alphabet.index(letter) + 1
def compute_color(file, rank):
if ((letter_to_int(file)+rank) % 2):
return 'white'
else:
return 'black'
def save_empty_fields(warped, skip_rank=None):
alpha = "ABCDEFGH"
ranks = [1, 2, 3, 4, 5, 6, 7, 8]
if skip_rank is not None:
ranks.remove(skip_rank)
for file in alpha:
for rank in ranks:
square = get_square(warped, file, rank)
color = compute_color(file, rank)
utils.imwrite(f"training_images/empty/{color}_square/training_{file}{rank}_{datetime.utcnow().timestamp()}.png", square)