advancedskrald/main.py

202 lines
5.9 KiB
Python

import cv2
import sys
from collections import defaultdict
from datetime import datetime
import numpy as np
import runner
from util import load_classifier, PIECE, COLOR, POSITION, Board, Squares, PieceAndColor
np.set_printoptions(threshold=sys.maxsize)
def identify_piece(image: np.ndarray, sift : cv2.xfeatures2d_SIFT, empty_bias=False) -> PieceAndColor:
centers = np.load("training_data/centers.npy")
probs = defaultdict(lambda: defaultdict(float))
best = 0
best_piece = best_color = None
for piece in PIECE:
for color in COLOR:
#color = runner.compute_color(file, rank)
classifier = load_classifier(f"classifiers/classifier_{piece}/{color}.pkl")
features = runner.generate_bag_of_words(image, centers, sift)
prob = classifier.predict_proba(features)
probs[piece][color] = prob[0, 1]
if prob[0, 1] > best:
best_piece, best_color = piece, color
print(probs)
if empty_bias:
probs[PIECE.EMPTY] *= 1.2
return best_piece, best_color
def pred_test(position: POSITION, mystery_image=None, empty_bias=False):
sift = cv2.xfeatures2d.SIFT_create()
if mystery_image is None:
mystery_image = cv2.imread("training_images/rook/white/rook_training_D4_2.png")
probs = classify(mystery_image, sift, empty_bias=empty_bias)
return probs
def pre_process_and_train() -> None:
runner.do_pre_processing()
runner.train_pieces_svm()
def build_board_from_squares(squares: Squares) -> Board:
sift = cv2.xfeatures2d.SIFT_create()
board = Board()
counter = 0
for position, square in squares.values():
likely_piece = identify_piece(square, sift)
board[position] = likely_piece
if likely_piece != PIECE.EMPTY:
counter += 1
print(counter)
print(64/(counter-1))
return board
def test_entire_board() -> None:
board_img = cv2.imread("homo_pls_fuck.jpg")
warped = runner.warp_board(board_img)
squares = runner.get_squares(warped)
board = build_board_from_squares(squares)
print(board)
def predict(square: np.ndarray, position: POSITION) -> PIECE:
y, x = np.histogram(square.ravel(), bins=256, range=[0, 256])
for color in COLOR:
empty_classifier = load_classifier(f"classifiers/classifier_empty/white_piece_on_{color}_square.pkl")
prob = empty_classifier.predict_proba(np.array(y).reshape(1, -1))
print(f"{file}{rank}, {color}: {prob[0, 1]}")
if prob[0, 1] > 0.5:
return PIECE.EMPTY
return None
if __name__ == '__main__':
board = cv2.imread("whole_boards/boards_for_empty/board_1554286488.605142_rank_3.png")
warped = runner.warp_board(board)
empty = 0
files = "ABCDEFGH"
ranks = [1, 2, 3, 4, 5, 6, 7, 8]
non_empties = []
for position in POSITION:
counter = 0
src = runner.get_square(warped, position)
width, height, _ = src.shape
src = src[width//25:, height//25:]
# src = src[:-width//200, :-height//200]
segmentator = cv2.ximgproc.segmentation.createGraphSegmentation(sigma=0.8, k=150, min_size=700)
segment = segmentator.processImage(src)
mask = segment.reshape(list(segment.shape) + [1]).repeat(3, axis=2)
masked = np.ma.masked_array(src, fill_value=0)
pls = []
for i in range(np.max(segment)):
masked.mask = mask != i
y, x = np.where(segment == i)
top, bottom, left, right = min(y), max(y), min(x), max(x)
dst = masked.filled()[top: bottom + 1, left: right + 1]
lel = (bottom - top) * (right - left)
#print(f"this is lel: {lel} ")
#print(f"this is meh: {np.sum(mask[:,:,0])} ")
if position == POSITION.H7:
print("--"*20)
print("H7")
print(lel)
print(len(y))
print(np.max(segment))
# print(lel)
# print(np.sum(mask[:, :, 0]))
print("--"*20)
pls.append(len(y))
if len(y) < (164**2)*0.65:
counter += 1
cv2.imwrite(f"segment_test/segment_{datetime.utcnow().timestamp()}_{position}.png", dst)
if np.max(segment) > 0 and not np.all([x < (164**2)*0.2 for x in pls]) and (np.max(segment) >= 3 or np.all([x < (164**2)*0.942 for x in pls])):
print(f"{position} is nonempty")
non_empties.append([f"{position}", src])
print(counter)
print(np.max(segment))
empty += 1
print("++"*20)
print(counter)
print(64-empty)
for non_empty in non_empties:
cv2.imshow(non_empty[0], non_empty[1])
cv2.waitKey(0)
exit()
#empty_classifier = load_classifier(f"classifiers/classifier_empty/white_piece_on_white_square.pkl")
#print(empty_classifier.predict_proba(np.array([0]*16).reshape(1, -1))[0, 1])
#exit()
board = cv2.imread("whole_boards/board_102_1554110461.608167_.png")
warped = runner.warp_board(board)
files = "ABCDEFGH"
ranks = [1, 2, 3, 4, 5, 6, 7, 8]
counter = 0
for file in files:
for rank in ranks:
square_img = runner.get_square(warped, file, rank)
if predict(square_img, file, rank) == 'empty':
counter += 1
print(counter)
exit()
square_img = runner.get_square(warped, "D", 2)
gray_square_img = cv2.cvtColor(square_img, cv2.COLOR_BGR2GRAY)
print(cv2.meanStdDev(gray_square_img)[1])
print(cv2.meanStdDev(square_img)[1])
cv2.imshow("square", square_img)
cv2.waitKey(0)
print(pred_test("C", 2, square_img))
sift: cv2.xfeatures2d_SIFT = cv2.xfeatures2d.SIFT_create()
gray = cv2.cvtColor(square_img, cv2.COLOR_BGR2GRAY)
kp, desc = sift.detectAndCompute(gray, None)
cv2.drawKeypoints(square_img, kp, square_img)
cv2.imshow("kp", square_img)
cv2.waitKey(0)