segment finding is nice

This commit is contained in:
Alexander Munch-Hansen 2019-04-04 18:27:19 +02:00
parent 6d8ffccf7d
commit 9551993039
323 changed files with 83 additions and 31 deletions

67
main.py
View File

@ -5,11 +5,12 @@ import runner
from sklearn.externals import joblib from sklearn.externals import joblib
import numpy as np import numpy as np
import operator import operator
from matplotlib import pyplot as plt
import glob import glob
import os import os
import heapq import heapq
import math import math
from datetime import datetime
pieces = ['rook', 'knight'] pieces = ['rook', 'knight']
#pieces = ['rook', 'knight'] #pieces = ['rook', 'knight']
@ -381,16 +382,18 @@ def selective_search(image, use_fast=False, use_slow=False):
# close image show window # close image show window
cv2.destroyAllWindows() cv2.destroyAllWindows()
def predict(square, file, rank): def predict(square, file, rank):
color = runner.compute_color(file, rank) square_color = runner.compute_color(file, rank)
empty_var_classifier = load_classifier(f"classifiers/classifier_empty_var/{color}.pkl")
magnitude_of_var = np.linalg.norm(cv2.meanStdDev(square)[1]) y, x = np.histogram(square.ravel(), bins=256, range=[0, 256]) # TODO: Maybe img.ravel() ?
prob = empty_var_classifier.predict_proba(np.array(magnitude_of_var).reshape(-1, 1)) for color in ['black', 'white']:
print(prob[0, 1]) empty_classifier = load_classifier(f"classifiers/classifier_empty/white_piece_on_{color}_square.pkl")
if (prob[0, 1]) > 0.5: prob = empty_classifier.predict_proba(np.array(y).reshape(1, -1))
return 'empty' print(f"{file}{rank}, {color}: {prob[0, 1]}")
if prob[0, 1] > 0.5:
return 'empty'
return None return None
@ -398,6 +401,7 @@ def predict(square, file, rank):
@lru_cache() @lru_cache()
def load_classifier(filename): def load_classifier(filename):
print(f"loading {filename}")
return joblib.load(filename) return joblib.load(filename)
@ -405,11 +409,56 @@ def load_classifier(filename):
if __name__ == '__main__': if __name__ == '__main__':
board = cv2.imread("whole_boards/boards_for_empty/board_1554288951.972197_.png")
warped = runner.warp_board(board)
empty = 0
files = "ABCDEFGH"
ranks = [1, 2, 3, 4, 5, 6, 7, 8]
non_empties = []
for file in files:
for rank in ranks:
src = runner.get_square(warped, file, rank)
#src = cv2.GaussianBlur(src, (5, 5), 0)
segmentator = cv2.ximgproc.segmentation.createGraphSegmentation(sigma=0.75, k=175, min_size=750)
segment = segmentator.processImage(src)
mask = segment.reshape(list(segment.shape) + [1]).repeat(3, axis=2)
masked = np.ma.masked_array(src, fill_value=0)
for i in range(np.max(segment)):
masked.mask = mask != i
y, x = np.where(segment == i)
top, bottom, left, right = min(y), max(y), min(x), max(x)
dst = masked.filled()[top: bottom + 1, left: right + 1]
cv2.imwrite(f"segment_test/segment_{datetime.utcnow().timestamp()}_{file}{rank}.jpg", dst)
if np.max(segment) >= 2:
print(f"{file}{rank} is nonempty")
non_empties.append([f"{file}{rank}", src])
print(np.max(segment))
empty += 1
print(64-empty)
for non_empty in non_empties:
cv2.imshow(non_empty[0], non_empty[1])
cv2.waitKey(0)
exit()
#empty_classifier = load_classifier(f"classifiers/classifier_empty/white_piece_on_white_square.pkl")
#print(empty_classifier.predict_proba(np.array([0]*16).reshape(1, -1))[0, 1])
#exit()
board = cv2.imread("whole_boards/board_102_1554110461.608167_.png") board = cv2.imread("whole_boards/board_102_1554110461.608167_.png")
warped = runner.warp_board(board) warped = runner.warp_board(board)
files = "ABCDEFGH" files = "ABCDEFGH"
ranks = [1,2,3,4,5,6,7,8] ranks = [1, 2, 3, 4, 5, 6, 7, 8]
counter = 0 counter = 0

View File

@ -1,3 +1,5 @@
from functools import lru_cache
import cv2 import cv2
import numpy as np import numpy as np
import glob import glob
@ -9,9 +11,13 @@ from sklearn.externals import joblib
from sklearn import neural_network from sklearn import neural_network
import heapq import heapq
from datetime import datetime from datetime import datetime
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
import utils import utils
import random
pieces = ["rook", "knight"] pieces = ["rook", "knight"]
colors = ['black', 'white'] colors = ['black', 'white']
@ -214,37 +220,28 @@ def load_training_data(spec_piece, color):
def train_empty_or_piece_var(): def train_empty_or_piece_var():
pieces = ['empty', 'knight', 'rook'] for square_color in ["black", "white"]:
for color in colors:
X = None X = None
Y = None Y = None
for piece in ['empty', 'rook', 'knight']:
total_weight = 0 for filename in glob.glob(os.path.join("training_images", f"{piece}", f"{square_color}_square", "*.png")):
for piece in pieces: piece_class = 'empty' == piece
total_weight += len(glob.glob(os.path.join("training_images", f"{piece}", f"{color}_square", "*.png")))
current_weight = len(glob.glob(os.path.join("training_images", 'empty', f"{color}_square", "*.png")))
for piece in pieces:
piece_class = int('empty' == piece)
for filename in glob.glob(os.path.join("training_images", piece, f"{color}_square", "*.png")):
img = cv2.imread(filename) img = cv2.imread(filename)
magnitude_of_var = np.linalg.norm(cv2.meanStdDev(img)[1]) y, x = np.histogram(img.ravel(), bins=256, range=[0, 256]) # TODO: Maybe img.ravel() ?
if X is None: if X is None:
X = np.array(magnitude_of_var) X = np.array(y)
Y = np.array([piece_class]) Y = np.array([piece_class])
else: else:
X = np.vstack((X, magnitude_of_var)) X = np.vstack((X, y))
Y = np.vstack((Y, [piece_class])) Y = np.vstack((Y, [piece_class]))
classifier = svm.SVC(class_weight={0: current_weight, 1: total_weight - current_weight}, probability=True) classifier = make_pipeline(StandardScaler(),
svm.SVC(C=10.0, gamma=0.01, probability=True))
classifier.fit(X, Y) classifier.fit(X, Y)
joblib.dump(classifier, f"classifiers/classifier_empty_var/{color}.pkl") joblib.dump(classifier, f"classifiers/classifier_empty/white_piece_on_{square_color}_square.pkl")
def train_pieces_svm(): def train_pieces_svm():
@ -349,11 +346,11 @@ def get_square(warped_board, file, rank):
file = files.index(file) file = files.index(file)
rank = 8 - rank rank = 8 - rank
width, _, _ = warped_board.shape # board is square anyway width, _, _ = warped_board.shape # board is square anyway
side = int(width * 0.045)
side = int(width * 0.04)
size = width - 2 * side size = width - 2 * side
square_size = size // 8 square_size = size // 8
padding = 0 padding = 0
x1 = side + (square_size * file) x1 = side + (square_size * file)
@ -413,6 +410,8 @@ def letter_to_int(letter):
alphabet = list('ABCDEFGH') alphabet = list('ABCDEFGH')
return alphabet.index(letter) + 1 return alphabet.index(letter) + 1
@lru_cache(maxsize=64)
def compute_color(file, rank): def compute_color(file, rank):
if ((letter_to_int(file)+rank) % 2): if ((letter_to_int(file)+rank) % 2):
return 'white' return 'white'
@ -435,4 +434,8 @@ def save_empty_fields(warped, skip_rank=None):
utils.imwrite(f"training_images/empty/{color}_square/training_{file}{rank}_{datetime.utcnow().timestamp()}.png", square) utils.imwrite(f"training_images/empty/{color}_square/training_{file}{rank}_{datetime.utcnow().timestamp()}.png", square)
if __name__ == '__main__':
train_empty_or_piece_var()

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.5 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.7 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.5 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.7 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.5 MiB

Some files were not shown because too many files have changed in this diff Show More