What up we can find all empties, we best

This commit is contained in:
Alexander Munch-Hansen 2019-04-08 23:59:06 +02:00
parent 5165609ac8
commit 6393b12e82
2 changed files with 67 additions and 62 deletions

120
main.py
View File

@ -3,11 +3,15 @@ import sys
from collections import defaultdict from collections import defaultdict
from datetime import datetime from datetime import datetime
import matplotlib.pyplot as plt
import numpy as np import numpy as np
import runner import runner
from util import load_classifier, PIECE, COLOR, POSITION, Board, Squares, PieceAndColor from util import load_classifier, PIECE, COLOR, POSITION, Board, Squares, PieceAndColor
from sklearn.exceptions import DataConversionWarning
import warnings
warnings.filterwarnings(action='ignore', category=DataConversionWarning)
np.set_printoptions(threshold=sys.maxsize) np.set_printoptions(threshold=sys.maxsize)
@ -37,7 +41,7 @@ def pred_test(position: POSITION, mystery_image=None, empty_bias=False):
sift = cv2.xfeatures2d.SIFT_create() sift = cv2.xfeatures2d.SIFT_create()
if mystery_image is None: if mystery_image is None:
mystery_image = cv2.imread("training_images/rook/white/rook_training_D4_2.png") mystery_image = cv2.imread("training_images/rook/white/rook_training_D4_2.png")
probs = classify(mystery_image, sift, empty_bias=empty_bias) probs = identify_piece(mystery_image, sift, empty_bias=empty_bias)
return probs return probs
@ -71,36 +75,36 @@ def test_entire_board() -> None:
def predict(square: np.ndarray, position: POSITION) -> PIECE: def predict(square: np.ndarray, position: POSITION) -> PIECE:
y, x = np.histogram(square.ravel(), bins=256, range=[0, 256]) y, x = np.histogram(square.ravel(), bins=32, range=[0, 256])
for color in COLOR: left, right = x[:-1], x[1:]
empty_classifier = load_classifier(f"classifiers/classifier_empty/white_piece_on_{color}_square.pkl") X = np.array([left, right]).T.flatten()
Y = np.array([y, y]).T.flatten()
area = sum(np.diff(x) * y)
plt.plot(X, Y)
plt.xlabel(f"{position}")
#plt.show()
#for color in COLOR:
empty_classifier = load_classifier(f"classifiers/classifier_empty/white_piece_on_{position.color}_square.pkl")
prob = empty_classifier.predict_proba(np.array(y).reshape(1, -1)) prob = empty_classifier.predict_proba(np.array(y).reshape(1, -1))
print(f"{file}{rank}, {color}: {prob[0, 1]}") print(f"{position}, {position.color}: {prob[0, 1]}")
if prob[0, 1] > 0.5: if prob[0, 1] > 0.95:
print(f"{position} is empty")
return PIECE.EMPTY return PIECE.EMPTY
return None return None
def remove_most_empties(warped):
if __name__ == '__main__':
board = cv2.imread("whole_boards/boards_for_empty/board_1554286488.605142_rank_3.png")
warped = runner.warp_board(board)
empty = 0 empty = 0
files = "ABCDEFGH"
ranks = [1, 2, 3, 4, 5, 6, 7, 8]
non_empties = [] non_empties = []
for position in POSITION: for position in POSITION:
counter = 0 counter = 0
src = runner.get_square(warped, position) src = runner.get_square(warped, position)
width, height, _ = src.shape width, height, _ = src.shape
src = src[width//25:, height//25:] src = src[width // 25:, height // 25:]
# src = src[:-width//200, :-height//200] # src = src[:-width//200, :-height//200]
segmentator = cv2.ximgproc.segmentation.createGraphSegmentation(sigma=0.8, k=150, min_size=700) segmentator = cv2.ximgproc.segmentation.createGraphSegmentation(sigma=0.8, k=150, min_size=700)
segment = segmentator.processImage(src) segment = segmentator.processImage(src)
@ -112,44 +116,32 @@ if __name__ == '__main__':
masked.mask = mask != i masked.mask = mask != i
y, x = np.where(segment == i) y, x = np.where(segment == i)
pls.append(len(y))
top, bottom, left, right = min(y), max(y), min(x), max(x) top, bottom, left, right = min(y), max(y), min(x), max(x)
dst = masked.filled()[top: bottom + 1, left: right + 1] dst = masked.filled()[top: bottom + 1, left: right + 1]
lel = (bottom - top) * (right - left)
#print(f"this is lel: {lel} ")
#print(f"this is meh: {np.sum(mask[:,:,0])} ")
if position == POSITION.H7:
print("--"*20)
print("H7")
print(lel)
print(len(y))
print(np.max(segment))
# print(lel)
# print(np.sum(mask[:, :, 0]))
print("--"*20)
pls.append(len(y))
if len(y) < (164**2)*0.65:
counter += 1
cv2.imwrite(f"segment_test/segment_{datetime.utcnow().timestamp()}_{position}.png", dst) cv2.imwrite(f"segment_test/segment_{datetime.utcnow().timestamp()}_{position}.png", dst)
if np.max(segment) > 0 and not np.all([x < (164**2)*0.2 for x in pls]) and (np.max(segment) >= 3 or np.all([x < (164**2)*0.942 for x in pls])): if np.max(segment) > 0 and not np.all([x < (164 ** 2) * 0.2 for x in pls]) and (
np.max(segment) >= 3 or np.all([x < (164 ** 2) * 0.942 for x in pls])):
print(f"{position} is nonempty") print(f"{position} is nonempty")
non_empties.append([f"{position}", src]) non_empties.append([position, src])
print(counter)
print(np.max(segment))
empty += 1 empty += 1
print("++"*20)
print(counter)
print(64-empty)
for non_empty in non_empties: print(64 - empty)
cv2.imshow(non_empty[0], non_empty[1])
cv2.waitKey(0) return non_empties
exit()
if __name__ == '__main__':
#board = cv2.imread("whole_boards/boards_for_empty/board_1554286488.605142_rank_3.png")
board = cv2.imread("whole_boards/boards_for_empty/board_1554288606.075646_rank_1.png")
warped = runner.warp_board(board)
non_empties = remove_most_empties(warped)
#empty_classifier = load_classifier(f"classifiers/classifier_empty/white_piece_on_white_square.pkl") #empty_classifier = load_classifier(f"classifiers/classifier_empty/white_piece_on_white_square.pkl")
#print(empty_classifier.predict_proba(np.array([0]*16).reshape(1, -1))[0, 1]) #print(empty_classifier.predict_proba(np.array([0]*16).reshape(1, -1))[0, 1])
@ -157,21 +149,33 @@ if __name__ == '__main__':
#exit() #exit()
board = cv2.imread("whole_boards/board_102_1554110461.608167_.png")
warped = runner.warp_board(board)
files = "ABCDEFGH"
ranks = [1, 2, 3, 4, 5, 6, 7, 8]
counter = 0 counter = 0
completely_non_empties = []
for position, square in non_empties:
#predict(square, position)
for file in files: #y, x = np.histogram(square.ravel(), bins=32, range=[0, 256])
for rank in ranks: #left, right = x[:-1], x[1:]
square_img = runner.get_square(warped, file, rank) #X = np.array([left, right]).T.flatten()
if predict(square_img, file, rank) == 'empty': #Y = np.array([y, y]).T.flatten()
#plt.plot(X, Y)
#plt.xlabel(f"{position}")
#plt.show()
if predict(square,position) == PIECE.EMPTY:
counter += 1 counter += 1
else:
completely_non_empties.append([position, square])
print(counter) print(counter)
for position, square in completely_non_empties:
cv2.imshow(f"{position}", square)
cv2.waitKey(0)
exit() exit()

View File

@ -82,7 +82,7 @@ def train_empty_or_piece_hist() -> None:
for piece in (PIECE.EMPTY, PIECE.ROOK, PIECE.KNIGHT): for piece in (PIECE.EMPTY, PIECE.ROOK, PIECE.KNIGHT):
for filename in glob.glob(os.path.join("training_images", f"{piece}", f"{square_color}_square", "*.png")): for filename in glob.glob(os.path.join("training_images", f"{piece}", f"{square_color}_square", "*.png")):
img = cv2.imread(filename) img = cv2.imread(filename)
y, x = np.histogram(img.ravel(), bins=256, range=[0, 256]) y, x = np.histogram(img.ravel(), bins=32, range=[0, 256])
X.append(y) X.append(y)
Y.append(piece == PIECE.EMPTY) Y.append(piece == PIECE.EMPTY)
@ -176,9 +176,10 @@ def get_square(warped_board: np.ndarray, position: POSITION) -> np.ndarray:
square_size = size // 8 square_size = size // 8
padding = 0 padding = 0
x1 = side + (square_size * position.file) x1 = side + (square_size * (position.file - 1))
x2 = x1 + square_size x2 = x1 + square_size
y1 = max(0, side + (square_size * (8 - position.rank)) - padding) # 8 - rank because chessboard is from 8 to 1 y1 = max(0, side + (square_size * (8 - position.rank)) - padding) # 8 - rank because chessboard is from 8 to 1
y2 = min(width, y1 + square_size + padding) y2 = min(width, y1 + square_size + padding)
square = warped_board[y1:y2, x1:x2] square = warped_board[y1:y2, x1:x2]