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Abstract—In this paper, we present a compressed data struc-
ture for moving object trajectories in a road network, which
are represented as sequences of road edges. Unlike existing
compression methods for trajectories in a network, our method
supports pattern matching and decompression from an arbitrary
position while retaining high compressibility with theoretical
guarantees. Specifically, our method is based on FM-index, a fast
and compact data structure for pattern matching. To further en-
hance the compression performance, we incorporate the sparsity
of road networks. In particular, we present the novel concepts
of relative movement labeling and PseudoRank, each contributing
to significant reduction in data size and query processing time.
Our theoretical analysis and experimental studies reveal the
advantages of our proposed method as compared to existing
trajectory compression methods and FM-index variants.

I. INTRODUCTION

In recent years, a vast amount of trajectory data from mov-
ing objects, such as automobiles, has become available. Ac-
cording to Han et al. [1], the total amount of GPS trajectories
generated by automobiles in the U.S. alone exceeded 53 TB in
2011. With recent increased interests in the use of such large
datasets in wide range of data-driven applications, fundamental
data manipulations such as retrieval and compression are
once again becoming crucial. In this paper, we focus on
moving object trajectories in (road) networks, called network-
constrained trajectories (NCTs), one of the most important
types of trajectories with many practical applications. Traveled
paths of NCTs can be represented as symbol sequences of road
segment IDs. Although this representation is more compact
than GPS coordinates, it is still insufficient for the vast datasets
that are now available. Therefore, compressed representations
of NCTs have been studied thus far [1–5].

If trajectories are simply compressed without an augmented
data structure, it is difficult to use them in real applications.
Therefore, compression methods that allow several operations
without decompressing the entire dataset are necessary, and
such methods have been the focus of recent studies. For
example, such studies include the in-memory data structures
proposed in [3] and [4], as well as an in-memory/on-disk hy-
brid structure proposed in [6]. In our present paper, we propose
a method that realizes a high-level compression while retaining
a high utility of the data. As the background and motivation
for our method, we first review the existing compressed data
structures for NCTs and their functions below.

NCTs consist of spatial paths and corresponding times-
tamps. Therefore, we must consider compression of these
paths and timestamps separately. For spatial paths, lossless
compression methods based on shortest-path encoding have
been studied in [1], [2], and [4]. Here, to compress the data,
these methods remove partial shortest paths in an NCT because
these paths can be recovered from the road network itself.
One drawback of this approach is that it cannot guarantee
the information-theoretic upper bound of the compressed data
size. A recent lossless path compressor introduced in [1] called
minimum entropy labeling (MEL) guarantees a theoretic bound
and also achieves practically higher compressibility than the
shortest-path encoding methods. As for the timestamps, all
methods noted above compress them independently from the
spatial path compression. In this paper, we do not discuss the
compression of timestamps directly, but we emphasize here
that our method can be easily combined with such temporal
compression methods (see Sec. IV-D and Sec. VII for details).

In general, it is difficult to define high utility of compressed
NCTs, because their utility depends on the application. In
this paper, we focus on two functions, i.e., pattern matching
without decompressing the entire dataset, and extracting sub-
paths from an arbitrary position. Intuitively, pattern matching
operations that find trajectories along a given path would have
wide applications in NCT processing. In fact, the existing
methods mentioned above (i.e., [3], [4], and [6]) closely relate
to pattern matching; however, to the best of our knowledge,
there are no NCT compressors that guarantee theoretical bound
for the compressed size while supporting fast pattern matching.

Given the above background, our research question is, how
can we realize high compressibility while enabling pattern
matching for NCTs? To address this question, we focus on
suffix arrays [7], data structures related to pattern matching.
Although the data structures for NCTs proposed in [3] and [6]
also employ suffix arrays, they do not focus on a compres-
sion method, instead use existing general-purpose compressed
suffix arrays that are typically used for genomic sequences.
Unfortunately, these existing methods are inefficient because
NCTs consist of a large alphabet (i.e., road segment IDs in
a potentially large road network) whereas genomic sequences
include only four characters (i.e., A, C, G, and T).

NCTs have another noteworthy feature, i.e., they can only
move along physically connected road segments. This feature
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is quite different from general sequences, as illustrated in
Fig. 1. In Fig. 1(a), we show four example NCTs in a small
network with six road segments (A–F). The corresponding
graph shown in Fig. 1(b) represents symbol transitions for
these four NCTs. Here, each vertex corresponds to a symbol
(i.e., a road segment), and directed edges exist between two
vertices if the corresponding two symbols can appear succes-
sively. For example, in Fig. 1(b), vertex A is connected with
vertexes B and D because we can only move to road segment
B or D from A. For NCTs, this empirical transition graph
(ET-graph) becomes a sparse graph, reflecting the physical
topology of road networks. This sparsity cannot be obtained
for general sequences, which leads to a denser ET-graph, as
illustrated in Fig. 1(c).

Our proposed method, Compressed-index for NCTs
(CiNCT ), significantly improves the compression and pattern
matching operations when applied to sequences with such
sparse ET-graphs. Our method is based on FM-index [8], a
compressed data structure for suffix arrays, which we describe
further in Section II. Note that it is challenging to incorporate
such sparsity into FM-index while retaining its theoretical
advantages because FM-index is compressed at the bit-level.
Therefore, in the remainder of our paper, we introduce some
novel techniques and provide theoretical analysis that explains
why our method yields substantial improvement in practice.

Contributions: To develop a data structure for NCTs that
simultaneously achieves a high compression ratio and high
utility, we propose CiNCT, as a novel method to compress
suffix arrays for sequences on a sparse graph. We summarize
our contributions as follows.
• We propose relative movement labeling (RML), which

converts sequences on a sparse graph to low-entropy
sequences. We theoretically prove its optimality and show
that RML provides a more compact representation of
NCTs than that of the MEL method [1].

• We incorporate RML into FM-index by introducing a new
concept called PseudoRank, which leads to significant im-
provements in both size and query processing speed (i.e.,
the speed of pattern matching and sub-path extraction) as
compared to existing FM-index variants. We also explain
theoretically why this occurs.

• Using several real NCT datasets, we show that our
method outperforms the state-of-the-art methods that do
not consider graph sparsity.

Outline: The remainder of our paper is organized as fol-
lows: preliminaries (Section II), proposed data structure (Sec-
tion III), proposed algorithms (Section IV), theoretical analysis
(Section V), experiments (Section VI), related work (Sec-
tion VII), and conclusion (Section VIII).

II. PRELIMINARIES

In this section, we introduce the data models and pattern
matching query. For readers not familiar with string pro-
cessing and indexing, we also describe the basic concepts
regarding FM-index. This is a data structure in which the
Burrows–Wheeler transform (Sec. II-A2) of a target string

A

B C

D

EF

A B C

D E

F

(a) Network-constrained

      trajectories (NCTs)
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       NCTs 

(c) ET-graph for
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Fig. 1. (a) Network-constrained trajectories (NCTs), and both (b) sparse and
(c) dense symbol transition graphs (ET-graphs).

TABLE I
NOTATION

Symbol Description Defined in
w,w′ ∈ E Road segments (characters) —
T, Tbwt Trajectory string and its BWT Def. 2, Fig. 2
S[i, j) Substring of S from i to j − 1 § II-A1
Σ, σ Alphabet set and its size § II-A1
R(P )=[sp, ep) Suffix range of a pattern P § II-A2
C[w] The number of w′ in T s.t. w′<w § II-A3
H0(S), Hk(S) 0th and kth order empirical entropy Eq. (3), (4)
GT , ET ET-graph and its edge set § III-B (Def. 4)
φ Relative movement labeling func. § III-B1
Zw′w Correction term Eq. (7)

is stored in a compressed data structure called wavelet
tree (Sec. II-A4). Specifically, we introduce Huffman-shaped
wavelet tree (HWT) and the related complexities. In Sec. II-B,
further compression technique called compression boosting is
introduced with the related compressed bit vector called RRR.
With the compression boosting, FM-index can be compressed
to the kth order empirical entropy (Eq. (4)). At the end of
this section, we discuss the issues of these techniques. The
relationship between these techniques are shown as the dotted
line in Fig. 5. Table I shows the notation used in this paper.

A. Definitions

1) Data models: First, we define NCTs as follows.
Definition 1: A network-constrained trajectory (NCT) on a

directed graph (V,E) is defined as a sequence of physically
connected road segments, i.e., e1e2 · · · en (ei ∈ E).

For example, we have e1 = A, e2 = B, e3 = E, and e4 = F
for T1 = ABEF illustrated in Fig. 1 (a). To build an FM-index
for a set of documents, they are usually concatenated into one
long string [6]. Similarly, we define a trajectory string that
concatenates the NCTs.

Definition 2 (Trajectory string): Let T := {Tk}Nk=1 be a
set of NCTs to be indexed. A trajectory string is defined
as T := T rev

1 $T rev
2 $ · · ·T rev

N $#, where T rev
k is the reversal of

string Tk, and $ and # are special symbols that represent NCT
boundaries and the end of the string, respectively.

For the four NCTs in Fig. 1 (a), the trajectory string is

T = FEBA︸ ︷︷ ︸
T rev
1

$ CBA︸︷︷︸
T rev
2

$ CB︸︷︷︸
T rev
3

$ DA︸︷︷︸
T rev
4

$#. (1)

In the later sections, we use this example for explanation. In
this paper, a string S has 0-based subscripts and |S| denotes its
length. S[i] and S[i, j) are the i-th element and the substring
from i to j − 1, respectively. The alphabet set is defined
as Σ := E ∪ {$,#}, and σ denotes its size. To define the
BWT below, we assume a lexicographical order on the road
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FEBA$CBA$CB$DA$#      0: #FEBA$CBA$CB$DA$      $
EBA$CBA$CB$DA$#F 1: $#FEBA$CBA$CB$DA A
BA$CBA$CB$DA$#FE      2: $CB$DA$#FEBA$CBA      A
A$CBA$CB$DA$#FEB      3: $CBA$CB$DA$#FEBA      A
$CBA$CB$DA$#FEBA      4: $DA$#FEBA$CBA$CB      B
CBA$CB$DA$#FEBA$      5: A$#FEBA$CBA$CB$D      D
BA$CB$DA$#FEBA$C      6: A$CB$DA$#FEBA$CB      B
A$CB$DA$#FEBA$CB      7: A$CBA$CB$DA$#FEB      B
$CB$DA$#FEBA$CBA      8: B$DA$#FEBA$CBA$C      C
CB$DA$#FEBA$CBA$      9: BA$CB$DA$#FEBA$C      C
B$DA$#FEBA$CBA$C     10: BA$CBA$CB$DA$#FE      E
$DA$#FEBA$CBA$CB     11: CB$DA$#FEBA$CBA$      $
DA$#FEBA$CBA$CB$     12: CBA$CB$DA$#FEBA$      $
A$#FEBA$CBA$CB$D     13: DA$#FEBA$CBA$CB$      $
$#FEBA$CBA$CB$DA     14: EBA$CBA$CB$DA$#F      F
#FEBA$CBA$CB$DA$     15: FEBA$CBA$CB$DA$#      #
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Fig. 2. The BWT of T is defined to be the last column of the sorted rotations
of T . This example is based on the trajectory string T in Eq. (1).

segments E (any ordering can be used for our purpose). The
lexicographical order is assumed to be # < $ < w (∀w ∈ E).

2) Pattern matching and BWT: The Burrows–Wheeler
transform (BWT) [9] is closely related to pattern matching
and is used in FM-index. It is a reversible transform of T ,
defined to be the last column of the lexicographically sorted
rotations of T (Fig. 2). For trajectory string Eq. (1), we have

Tbwt = $AAABDBBCCE$$$F#. (2)

For a given pattern (string) P , we can define a unique range
R(P ) = [sp, ep) for which the prefixes of the corresponding
sorted rotations are equal to P . We call this range the suffix
range of P . For example, if P = BA, we have R(P ) = [9, 11)
(see the underlined prefixes in Lines 9 and 10 in Fig. 2).

Definition 3 (Pattern matching): Finding R(P ) for a given
P is called pattern matching, or suffix range query.

For NCTs, pattern matching for a trajectory string T finds
a suffix range of a given spatial path P . It is known that the
suffix range is useful in spatio-temporal query processing for
NCTs (see Section VII). This is why we focus on this query.

In this paper, we also focus on another query, sub-path
extraction query, that recovers a sub-path from an arbitrary
position in BWT Tbwt. We describe this query in Section IV-C.

3) FM-index and an algorithm to find suffix ranges: The
FM-index [8] is a data structure that compresses a large string
and indexes it at the same time. Specifically, the FM-index of
a string T is a data structure in which the BWT of T is stored
in a wavelet tree. Suffix range queries can be processed rapidly
by FM-index. In the following, we overview how it works. It is
known that Algorithm 1 can find the suffix range R(P ) for any
P based on Tbwt. The rank function, rankw(Tbwt, i), returns
the number of occurrences of a symbol w ∈ Σ in a substring
Tbwt[0, i). For example, we have rankB(Tbwt, 5) = 1 because

Tbwt =

Tbwt[0,5)︷ ︸︸ ︷
$AAAB DBBCCE$$$F#.

Moreover, C[w] is the number of symbols in Tbwt that
are lexicographically smaller than w. For example, we have
C[A] = 5 and C[B] = 8 by simple counting. The range
[C[w], C[w+ 1]) defines the suffix range R(w) (e.g., R(A) =
[5, 8); see that A appears as the prefixes in [5, 8) in Fig. 2).

Algorithm 1: Finding the suffix range R(P ) = [sp, ep)

for a given query P of length m based on Tbwt (SearchFM)

Input: BWT string: Tbwt, Query string: P ,
Integer array: C

Output: Range of Tbwt that matches to P
1 w ← P [m− 1]; sp← C[w]; ep← C[w + 1]
2 for i← 2 to m do
3 w ← P [m− i]
4 sp← C[w] + rankw(Tbwt, sp)
5 ep← C[w] + rankw(Tbwt, ep)
6 if sp ≥ ep then return NotFound
7 return [sp, ep)

To understand how Algorithm 1 works, let us consider a
query P = BA. In Line 1, we have w = A, sp = 5, and
ep = 8. Consider the first (and last) iteration with i = 2. We
have sp = C[B] + 1 = 9 and ep = C[B] + 3 = 11 because
rankB(Tbwt, sp) = 1 and rankB(Tbwt, ep) = 3 by definition.
Therefore [sp, ep) = [9, 11) is returned at Line 7, which is
equivalent to R(BA) given in Fig. 2.

We can say that fast calculation of rankw enables the fast
execution of Algorithm 1 because all the operations except for
rankw(Tbwt, i) are merely either substitutions or summations.
However, naı̈ve calculation of rankw with cumulative counting
incurs an unacceptable O(|Tbwt|) time.

4) Wavelet tree: A wavelet tree [10] storing Tbwt enables
fast calculation of rankw(Tbwt, i); its time complexity does not
depend on the data size |Tbwt|. Figure 3 illustrates a wavelet
tree for the string S = Tbwt in Eq. (2). The bit representation
of each symbol is predefined (e.g., Huffman coding based on
the frequency of each symbol in Tbwt). Each node v in the
tree stores a bit vector Bv . For the root node v0, Bv0 stores
the most significant bit (MSB) of each symbol in S. At the
second level, the symbols are divided into two parts based on
the bit value at the first level, while keeping the ordering. Each
bit vector stores the second MSB. Repeating such partitioning
recursively, we obtain the wavelet tree. In fact, Bv is stored
in a succinct dictionary [11], [12], which is a bit vector that
supports a bit-wise rank (i.e., rank0(Bv, j) and rank1(Bv, j))
in O(1) time.

There are several types of wavelet tree with different com-
pression characteristics that are determined by tree shape and
the type of succinct dictionary. In CiNCT, we use a Huffman-
shaped wavelet tree (HWT) [13], whose tree shape is that of
the Huffman tree of S. It is known that an HWT can compress
a string S of length n to at most n(1 + H0(S)) + o(n) bits.
Here, H0(S) is the 0th order empirical entropy [14]:

H0(S) =
∑

w∈Σ

nw
n

lg
n

nw
, (3)

where nw is the number of occurrences of w in S.
To calculate rankw(S, j), the wavelet tree calculates the

bit-wise rank value at each node v0, v1, · · · , vk between the
root and the leaf corresponding to the bit representation
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A: 111

B: 00

C: 110
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E: 0100
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1111000011011100
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0100111
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1001
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11100
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01

D#
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{E,F} {#,D}

{E} {F} {#} {D}

MSBs

Level 1

Level 2

Level 3

Level 4

Fig. 3. Wavelet tree: a bit representation of each symbol in a string S is
stored in a binary tree (this example is the HWT of the BWT of the trajectory
string Eq. (2)). Note that only bit vectors are stored in each node.

w = b0b1 · · · bk (see [10] for details). This indicates that bit-
wise rank operations required to obtain rankw(S, j) is equal
to k (i.e., the length of the bit representation of w). This fact
leads to the following result [13].

Theorem 1 (Rank on HWT): If rankw(S, j) is executed on
uniformly random w over S[0, n), it runs in O(1 + H0(S))
time on average.

This result implies that a string with small entropy H0(S)
achieves not only a small size but also a fast rank operation,
which plays an important role in our theoretical analysis.

B. Compressed variants of FM-index

Here, we consider further compression of FM-index. Let
us consider a sub-path of length 3 in a real NCT dataset:
et−2 et−1 et. It is unlikely that two right turns occur in
a row because most vehicles go toward their destinations.
Considering such high-order correlations among symbols, we
can boost the compression. As noted before, the prefix BA∈Σ2

appears in [9, 11) (Fig. 2). The other prefixes W ∈ Σ2 have
their corresponding ranges.

Let us divide Tbwt based on such prefixes W (called con-
texts of length two) as in Fig. 4. These context blocks represent
the next segment et given the context W = et−1 et−2. We have
a chance of compression because the frequency of symbols in
each context is biased as discussed above.

1) Compression boosting (CB): The above idea can be
generalized to any length of context. Let us divide Tbwt into
l blocks of context W ∈ Σk of length k: Tbwt = L1L2 · · ·Ll
(l ≤ σk). Storing each Lj in a 0-th order entropy compressor
such as an HWT, we can compress Tbwt to nHk(T ) + o(n).
Here, Hk is k-th order empirical entropy [14]:

Hk(T ) :=
∑

W∈Σk

nW
n
H0(TW ), (4)

where TW is the concatenation of all symbols in T that precede
the context W . To support a fast rank operation on those
divided blocks, we need to precompute and store the rank
results at each location of l blocks for all w ∈ Σ.

Taking larger k seems to be desirable because Hk(T ) ≥
Hk+1(T ) for all k ≥ 0 [14]. However, partitioning into many
blocks leads to the following problems in practice:
P1) Blocks of variable length lead to inefficient random

access to Tbwt.

F # CC D $$$ $ AA BB A B E

# $ $$ $ AAA B BB CC D E F

$ A AA B DBB C CE $$ $ F #

1st column

2nd column

last column (     )

Contexts

(length 2)

Fig. 4. Compression boosting of FM-index: Tbwt is divided into contexts
and each partition is compressed separately.

P2) Index size increases because of the overhead of block-
wise storage (e.g., pointers in Huffman trees).

P3) We have to save lσ integers for the rank results. This is
unrealistic for huge σ even if k = 1 (l = σ).

2) Variants of CB: There are some CB variants that avoid
the above problems. Fixed-block boosting [15] adopts blocks
of a fixed size. Although this solves P1 (and P2 partially),
problem P3 remains for huge σ. Implicit compression boosting
(ICB) [16] avoids such explicit block partitioning by using
a compressed succinct dictionary called an RRR [12] in the
wavelet tree of Tbwt. This solves P1 and P3. In this paper,
we consider two types of ICBs, ICB-Huff and ICB-WM. The
former is ICB with an HWT, while the latter is ICB with
a wavelet matrix [17], which is an efficient alternative to a
wavelet tree. As discussed in our theoretical analysis, ICBs
still suffer from large overheads when applied to a string with
large alphabet, such as a trajectory string of NCTs.

III. PROPOSED DATA STRUCTURE

A. Overview

For NCTs, the alphabet size σ can be millions because
it is the number of road segments in a road network. As
discussed in the previous section, this makes the compression
of trajectory strings inefficient, because the redundant bits in
wavelet trees increase as σ increases. To avoid this, we convert
trajectory strings into strings with a small alphabet via relative
movement labeling (RML), which is based on the sparsity of
road networks. Figure 5 and the following give an overview
of how to construct the proposed data structure, CiNCT.

1) Convert a set of NCTs into a trajectory string T .
2) Calculate the BWT of T and obtain Tbwt.
3) Construct an ET-graph GT and a relative movement

labeling (RML) function φ based on T (Section III-B)
4) Label Tbwt based on the RML function φ and obtain the

labeled BWT φ(Tbwt) (Section III-C).
5) Store φ(Tbwt) in an HWT with RRR and obtain the

proposed index structure (Section III-C).

As steps 1 and 2 are straightforward, we describe the details
of steps 3–5 in the following sections. We emphasize that the
NCTs are labeled after the BWT (step 4), otherwise we would
be unable to implement the suffix range query. Due to this
labeling step, we need to develop an algorithm that differs
from Algorithm 1. Such an algorithm is described in Section
IV. The theoretical consequences of CiNCT are described in
Section V. Here, we focus on the index structure.

Note that CiNCT basically deals with static data. We can
treat growing data by periodic reconstruction or by construct-
ing an index for new data at certain time intervals.
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Compressed Wavelet Tree

Existing methods

NCTs
Step 1.

Step 2. Step 3.

Step 5.

[INPUT]

ET-graph

Labeling
functionLabeled BWT

String

BWT

Sec. II-A1

Sec. II-A2

Sec. II-A4, Sec. II-B

Sec. III-C

Sec. III-B

Sec. III-B

Fig. 5. Overview of CiNCT (index construction). Note that the existing
methods (ICBs; dotted line) do not have the labeling step (yellow boxes).

B. Relative movement labeling (RML)

The RML converts trajectory strings into strings with small
alphabet based on the following fact: NCTs can only move be-
tween physically connected road segments. First, we describe
its idea based on the example in Fig. 1 (a). If a vehicle is on
a road segment w′ = A, the next segment w has to be B or
D. Hence, we label them 1 and 2, respectively. Generally, if
there are k connected road segments from a certain segment,
we can label them with 1, · · · , k. The sequences converted
with this relative movement labeling (RML) are expected to
have small alphabet because k is smaller than the maximum
out-degree of the road network. To define RML formally, let
us define an empirical transition graph (ET-graph).

Definition 4 (ET-graph): Let T be a string defined on an
alphabet Σ. An ET-graph GT of T is a directed graph that
satisfies: 1) the vertex set is Σ; 2) a directed edge (w′, w) ∈
Σ× Σ exists iff there exists a substring ww′ in T . The edge
set is denoted by ET .

In other words, an edge exists iff a direct transition be-
tween w′ and w exists in T . An ET-graph is a sparse graph
because it has a similar topology to the original road network.
Figure 6 (a) illustrates the ET-graph of the trajectory string
T given in Eq. (1). Note that ET-graphs include the special
symbols $ and #.

1) Definition of RML: RML can be defined as an integer
assigned on each edge of the ET-graph (see Fig. 6 (a)). For
example, the transition A → B is labeled 1. We denote such
labeling as φ(B|A) = 1. The transition A → D must have a
different label, otherwise we cannot distinguish them.

In general, for transition w′ → w, we denote such a labeling
function by φ(w|w′). To make the labeling distinct based on
the previous symbol w′, the RML function φ must satisfy the
following requirement:
• Requirement: The RML function φ(·|w′) must be a one-

to-one map for any w′.
Now, we discuss how to construct the RML function φ that

satisfies the requirement above. Let us consider the out-vertex
set of w′, defined as Nout(w′) = {w|(w′, w) ∈ ET }, that
determines the set of vertexes directly accessible from w′.
Based on the ET-graph and out-vertex set, we define φ(·|w′)
as follows. Given w′, assign a different small integer cww′
to each w ∈ Nout(w

′) and define φ(w|w′) := cww′ . It is
clear that φ(·|w′) is a one-to-one map. If w /∈ Nout(w′), we
cannot define φ(w|w′). However, this is not a problem because
w /∈ Nout(w

′) indicates that the string ww′ is not found in
T , which tells us the result of pattern matching is null. This

A

B C

D

EF#

$

1

2

1

2

1 1

11

1

1

2

(a) ET-graph and RML

# $$$$ AAA BBB CC D E F

$ AAAB DBB CCE $$ $ F #

1 1112 211 112 11 1 1 1

Context

(k=1)

(b) Labeling Tbwt with RML

Fig. 6. (a) ET-graph of our example Eq. (1): each node represents a road
segment, and an edge exists if the corresponding transition occurs in T .
The integer on each edge is the corresponding label. (b) Relative movement
labeling: φ(Tbwt) produces a string with a lower entropy than that of Tbwt.

point is important for our search algorithm.
2) Finding an optimal RML: The RML φ described above

does not define a unique labeling function because we have not
yet specified a concrete way to assign the small integers cww′ .
Here, we propose a strategy based on a bigram count nww′
(i.e., the frequency of ww′ in T ). The elements in Nout(w

′)
are sorted in descending order of bigrams nww′ . The vertex
w with the largest bigram count is given the smallest label, 1.
The second-most frequent vertex is labeled 2, the third-most
frequent vertex is labeled 3, and so on.

The labels in Fig. 6 (a) are determined in this way. For
example, since we have nBA>nDA (nBA =2 and nDA =1), the
edge from A to B has the smallest label 1: φ(B|A) = 1.

In the next section, we show how to label Tbwt using this
bigram-based RML function φ. One might wonder whether
there exists a better labeling strategy. We prove, however, the
optimality of the labeling that leads to strong conclusions: our
RML achieves the smallest size and the fastest search. See
Section V-A for details.

C. Data structure

Here, we describe how to obtain φ(Tbwt) and the final index
(steps 4 and 5 in Section III-A).

1) Labeling BWT (step 4): Based on the RML function φ
obtained in the previous section, the BWT Tbwt is converted
to φ(Tbwt) in the following manner. For example, let us focus
on the third block of Tbwt, DBB, in Fig. 6 (b). This block
corresponds to the context of A, which indicates that the
previous symbol of these DBB is A. Hence, DBB is labeled
as 211 because φ(B|A) = 1 and φ(D|A) = 2 in Fig. 6 (a).
All the other blocks also can be labeled in the same manner.

This labeling strategy generates a low-entropy sequence
φ(Tbwt) as shown in Fig. 6 (b), because the distribution
of the resulting symbols is biased toward smaller integers
(i.e., 1 is the largest fraction). For this example, we have
H0(Tbwt) = 2.8 and H0(φ(Tbwt)) = 0.7 (unit: bits/symbol).

2) Storing to a compressed wavelet tree (step 5): In this
step, we store the labeled BWT φ(Tbwt) to an HWT. For
bit vectors in an HWT, we adopt a practical version of
the compressed succinct dictionary called RRR [18]. This is
a straightforward step. Figure 7 depicts the comparison of
Huffman trees of Tbwt and φ(Tbwt) for the example in Fig. 6
(b). The Huffman tree of φ(Tbwt) is obviously simpler than
that of Tbwt. Because these tree shapes are the same as those
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Fig. 7. Huffman trees of Tbwt and φ(Tbwt): each leaf corresponds to
a symbol. The tree generated by CiNCT (b) is simpler than that from the
existing technique (a).

of HWTs, this simplification explains intuitively why CiNCT
is small and fast. For more details, see Section V.

An RRR bit vector has one parameter b, that controls the
size of the internal blocks. For larger b, we obtain better
compression but slower search (rank calculation) in general,
and vice versa. This b is the only parameter in CiNCT.
However, in Section VI, we show that this parameter has only
a small influence on the index size and the search time.

3) Storing ET-graph: We use an adjacency list to represent
the ET-graph GT . The value φ(w|w′) is assigned to the
edge (w′, w) ∈ ET . Thus φ(w|w′) is obtained in O(δ) time
by a linear search over Nout(w′). We also assign C[w] to
each vertex w in GT . Correction terms Zw′w, introduced in
Section IV-A, are also attached to each edge. Since GT is
sparse, the space needed to store GT is negligible when |T |
gets large. Note that ET-graphs can be implemented using
succinct graphs (e.g., [19]). In this paper, however, we do
not use them because their impact on the data size was small
in our preliminary experiments.

IV. PROPOSED QUERY PROCESSING ALGORITHMS

Here, we describe another key concept of this paper, Pseu-
doRank, then show algorithms for two types of queries, suffix
range queries and sub-path extraction queries.

A. PseudoRank

As noted in Sec. II-A3, fast calculation of rankw(Tbwt, j) is
needed for Algorithm 1. The original FM-index stores Tbwt in
a wavelet tree to calculate ranks quickly. In our case, however,
we do not have the original Tbwt but only have the labeled
φ(Tbwt). Can we obtain the rank values for the original BWT
by using only the labeled BWT? Seemingly, this is difficult
because different symbols are mapped to the same label (e.g.,
both A and C are converted to 1 as illustrated in Fig. 6 (b)).

The key idea in CiNCT is to simulate the rank operation
over Tbwt. Figure 8 illustrates this idea. Let us consider the
range R(A) = [C[A], C[B]) and j ∈ R(A). Because the
substring Tbwt[C[A], C[B]) = DBB is labeled as 211 by using
the one-to-one map φ(·|A) as described in Section III-C, the
following two counts are equivalent for ∀j ∈ R(A):
• the number of occurrences of D within the range R′ :=

[C[A], j) in Tbwt (the shaded region in Fig. 8), and
• the number of occurrences of 2 within R′ in φ(Tbwt).
This balancing relationship holds in general. Let us consider

a context w′. For all j such that C[w′] ≤ j ≤ C[w′+ 1],
let us consider a range R′ := [C[w′], j). For a symbol w ∈

$ AAAB DBB CCE $$ $ F #

1 1112 211 112 11 1 1 1

One to one correspondence

in                     (shaded area)

Fig. 8. Basis of the balancing equation (Eq. (5)) for PseudoRank

Nout(w
′), the number of occurrences w within R′ in Tbwt and

that of the label η := φ(w|w′) within R′ in φ(Tbwt) are the
same because of the one-to-one requirement for φ(·|w′). This
leads to the following balancing equation:

rankw(Tbwt, j)− rankw(Tbwt, C[w′])

= rankη(φ(Tbwt), j)− rankη(φ(Tbwt), C[w′]). (5)

Rearranging this equation, we have the following theorem,
which allows us to simulate the rank operation.

Theorem 2 (Pseudo-rank): If w ∈ Nout(w′) and
C[w′] ≤ j ≤ C[w′+ 1], then we have

rankw(Tbwt, j) = rankη(φ(Tbwt), j)− Zw′w, (6)
where η := φ(w|w′) and
Zw′w := rankη(φ(Tbwt), C[w′])− rankw(Tbwt, C[w′]). (7)

We emphasize that the correction term Zw′w does not
depend on j, implying that the number of correction terms
needed is equal to |ET |. Importantly, this property allows us to
precompute and store the correction terms (as noted in Section
III-C, they are attached to each edge (w′, w) ∈ ET ).

This theorem produces Algorithm 2, which calculates the
rank values using only φ(Tbwt). We also emphasize that
PseudoRank does not allow us to calculate rank values for
all pairs of (w, j). However, this limitation is not a problem
for our search algorithm, as shown in the next subsection.

Algorithm 2: Emulating rankw(Tbwt, j) by using only
φ(Tbwt) (PseudoRank(φ(Tbwt), j, w,w

′, Zw′w))

Input: Labeled BWT string of length n: φ(Tbwt),
Location of rank j, Correction term Zw′w,
Target symbol w, Previous symbol w′

Output: The value of rankw(Tbwt, j)
1 if w ∈ Nout(w′) and C[w′] ≤ j ≤ C[w′+ 1] then
2 η ← φ(w|w′) // RML
3 return rankη(φ(Tbwt), j)− Zw′w
4 return NotFound

B. Suffix range query with CiNCT

With the PseudoRank, we can simulate rankw(Tbwt, j) using
only the wavelet tree of φ(Tbwt) and the correction term Zw′w
(Eq. (7)). Replacing the rank operations in Algorithm 1 with
PseudoRank, we obtain our search algorithm (Algorithm 3),
whose correctness is shown below.
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Algorithm 3: Finding the suffix range [sp, ep) for a given
query P of length m based on φ(Tbwt) (LabeledSearchFM)

Input: Labeled BWT string of length n: φ(Tbwt),
Query of length m: P [0,m),
Correction terms: {Zw′w}

Output: Range of Tbwt that matches to P
1 w ← P [m− 1]; sp← C[w]; ep← C[w + 1]
2 for i← 2 to m do
3 w′ ← w // Save the previous symbol
4 w ← P [m− i]
5 if w /∈ Nout(w′) then
6 return NotFound
7 sp←C[w]+PseudoRank(φ(Tbwt), sp, w,w

′, Zw′w)
8 ep←C[w]+PseudoRank(φ(Tbwt), ep, w,w

′, Zw′w)
9 if sp ≥ ep then

10 return NotFound
11 return [sp, ep)

1) Correctness of the algorithm: To guarantee that Algo-
rithm 3 is equivalent to Algorithm 1, we have to check the
following two conditions on PseudoRank (Theorem 2) are
satisfied immediately before Line 7: (c1) w ∈ Nout(w′); (c2)
C[w′] ≤ sp ≤ C[w′+ 1] and C[w′] ≤ ep ≤ C[w′+ 1].

As noted previously, no substring ww′ appears in T if w /∈
Nout(w

′); hence, NotFound is returned if w /∈ Nout(w
′)

at Line 6. Therefore, (c1) w ∈ Nout(w′) holds immediately
before Line 7. For (c2), before Line 7, sp satisfies

sp = C[w′] + rankw′(Tbwt, sp′), (8)

where sp′ is the previous value. By the rank definition, 0 ≤
rankw′(Tbwt, j) ≤ C[w′+ 1] − C[w′](0 ≤ ∀j < |T |) holds,
where C[w′+ 1]−C[w′] means the number of occurrences of
w′ in T . Combining this inequality with Eq. (8), we obtain
C[w′] ≤ sp ≤ C[w′+ 1]. We can prove the condition for ep
in a similar manner.

C. Extracting a sub-path with CiNCT

Here, we describe another important query, sub-path ex-
traction query. For example, let us focus on the third sorted
rotation in Fig. 2. Its suffix of length four is FEBA (colored in
blue). This corresponds to the example NCT T r1 in Eq. (1). In
this way, the sub-path extraction queries recover a sub-path of
length l from an arbitrary position j in BWT Tbwt (j = 3 for
the example above). This query is useful if we need to obtain
certain NCTs stored in BWT string, or we need to recover the
entire trajectory string. Formally, extract(j, l) returns T [i−l, i)
where i = SA[j] (SA is the suffix array of T ). The subscript
j is often referred to as an inverse suffix array (j = ISA[i]).

Algorithm 4 shows how to obtain extract(j, l) using only
φ(Tbwt) and the ET-graph. This is obtained by mimicking
LF-mapping [8] with PseudoRank. Line 1 performs a bi-
nary search to find the last character T [i] = w′ such that
C[w′] ≤ j < C[w′ + 1]. Line 4 first accesses the j-th
character of φ(Tbwt) (i.e., the labeled Tbwt[j]), then decodes

Algorithm 4: Extracting a sub-path T [i − l, i) for given
j = ISA[i] and l > 0 (extract)

Input: Labeled BWT: φ(Tbwt), Position on Tbwt: j,
Extraction length: l, Correction terms: {Zw′w}
Output: A substring S := T [i− l, i)

1 w′ ← BinarySearch(j, {C[w′]}) // T[i]
2 for k ← 1 to l do
3 η ← φ(Tbwt)[j]; w ← decode(η|w′); S[l − k]← w
4 j ← C[w] + PseudoRank(φ(Tbwt), j, w, w

′, Zw′w)
5 w′ ← w // Save previous symbol
6 return S

the Tbwt[j] = T [i − k − 1] = w using the ET-graph. Line 5
is similar to Line 7 in Algorithm 3, which jumps to the next
position on Tbwt (LF-mapping simulated by PseudoRank).

D. Linking time information to CiNCT

Here, we describe how to link trajectory IDs and timestamps
to CiNCT. In document retrieval, Sadakane [20] proposed a
method to list document (trajetory) IDs that match a pattern
P , using additional 4|T |+o(|T |) bits. Once we obtain the tra-
jectory IDs, we can access to each corresponding timestamps
compressed by existing methods [1], [4], [5] (see Sec. VII-2).

Other linking methods are found in [3], [6]. Essentially,
these methods link a suffix array for the trajectory string and
the timestamp information using an inverse suffix array of the
trajectory string T . Based on this idea, SNT-index [6] links
FM-index and B+-tree for timestamps and trajectory IDs. This
enables an advanced query called strict path query, which finds
the trajectory IDs that traveled along a given sub-path P during
a time interval I (see Sec. VII-1).

V. THEORETICAL ANALYSIS

Here, we explain theoretically why CiNCT is compact and
fast. We first show the optimality of RML, that is, the labeled
BWT φ(Tbwt) achieves the smallest entropy. Then, we explain
that such a small entropy contributes high compressibility and
fast query processing. We also show that RML is better than
other labeling method called MEL, recently proposed in [1].

A. Optimality of RML

The 0th order entropy H0 given in Eq. (3) plays important
roles in our analysis. First, we show the labeling strategy based
on bigram counts nww′ proposed in Section III-B achieves the
minimum value of H0 among all possible labelings.

Theorem 3 (Optimality): Let φ∗ be the RML based on the
bigram ordering strategy and φ be any possible RML that
satisfies the requirement in Section III-B. Then, we have

H0(φ∗(Tbwt)) ≤ H0(φ(Tbwt)). (9)

Proof: Due to space limitations, we can only provide
a sketch of our proof here (see our long version [21] for
details). Let φ∗ be a labeling function that achieves the
minimum entropy. Without loss of generality, a label k ∈ N
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is the kth most frequent label in φ∗(Tbwt). Assume that the
optimal labeling φ∗ is not completely sorted in the bigram
counts nww′ . Considering a new labeling φ̃ that fixes one of
such disordered parts, a simple calculation reveals that the
new sequence labeled with φ̃ achieves smaller entropy than
H0(φ∗(Tbwt)). This contradicts the optimality of φ∗.

As a special case of this theorem, we obtain an unlabeled
case result, i.e., H0(φ∗(Tbwt)) ≤ H0(Tbwt), by putting as
φ = id (identity labeling). Importantly, we see that

H0(φ∗(Tbwt))� H0(Tbwt) (10)

holds for real NCT datasets in our experiments (Table III).

B. Compressed size

1) Evaluating space overheads: The data structure of
CiNCT consists of two parts: the labeled BWT φ(Tbwt) and
the ET-graph GT . As noted in Section III-C, the size of GT
is negligible when |T | is large. Here, we compare the sizes of
Tbwt and φ(Tbwt) stored in HWTs with RRR. Note that these
corresponds ICB-Huff and CiNCT, respectively. The main
advantage of CiNCT comes from the lower space overhead
due to RRR, as explained below. For a given bit vector B,
it is known that the practical RRR with the parameter b (see
Sec. III-C2) uses at most

|B|H0(B) + |B| · h(b) (11)

bits where h(b) = lg(b+1)
b [18]. We call the second term the

RRR-overhead. For b = 63, we have an overhead of h(b) =
(lg 64)/63 ' 0.095 bits per bit.

For a given string S, it is known that the average code
length with Huffman coding is at most (1 +H0(S)) bits [13].
Hence, the total length of bit vectors in the HWT is

∑
v |Bv| '

|S|(1+H0(S)). Summing the RRR-overheads over all internal
nodes v in the HWT, we obtain total bits of the overhead:∑

v
|Bv| · h(b) ' |S|(1 +H0(S)) · h(b). (12)

The right-hand side implies that the RRR-overhead of a
sequence S is small if its entropy H0(S) is small. Therefore,
Eq. (10) indicates that the space overhead for CiNCT is much
smaller than that for ICB-Huff.

2) High-order compression: Here, we analyze the remain-
ing first (and dominant) term in Eq. (11). Summing this term
over all internal nodes v in the HWT, we find that the total bits
needed for this term achieves the k-th order entropy Eq. (4) for
all k > 0, as shown in the following Theorem 4. This theorem
implies that our method guarantees high compressibility in an
information theoretic sense. Note that this kind of entropic
bound has not been guaranteed by the existing shortest-path
based NCT compressors.

Theorem 4: For all k > 0, the total bits required to store
φ(Tbwt) in an HWT with RRR, apart from the overhead
Eq.(12), are |T |Hk(T ) +O(lσb), where l ≤ σk is the number
of distinct contexts W ∈Σk in T .

This is proved in a similar way to the existing compression
boosters [16], but we omit the proof here due to the space
limitations. See our long version for the proof [21].

C. Processing time of suffix range queries

To evaluate whether Algorithm 3 is faster than Algorithm 1,
we focus on the time complexity of the rank operation.
As stated in Theorem 1 (Sec. II-A4), rankw(S, j) runs in
O(1 +H0(S)) time.1 Hence, the relationship H0(φ(Tbwt))�
H0(Tbwt) (Eq. (10)) again explains why CiNCT is faster than
ICB-Huff. Of course, Algorithm 3 incurs an additional cost in
calculating φ(w|w′), but this is not serious for a sparse GT .

Moreover, we have the following theorem implying that
the search time does not depend on the road network size
σ but depends only on the maximum out-degree δ of the road
network (which is usually less than four).

Theorem 5 (σ-independence): Let P ∈ E∗ be any query
path ($ is not included). Algorithm 3 runs in O(|P | ·δb) time.

Proof: For any w,w′ ∈ E, we have η := φ(w|w′) ≤ δ+2.
By the construction of RML, η is at least the δ + 2-th most
frequent symbol in φ(Tbwt). Thus η is at most located at the
δ + 2 level of the Huffman tree. Hence, rankη(φ(Tbwt), j)
in Eq. (6) runs in O(δb) time (remember the bit-wise rank
operation in practical RRR [18] requires O(b) time). Since
PseudoRank is calculated at most 2|P |−2 times in Algorithm
3, this leads to the conclusion.

Other FM-indexes do not satisfy this property. Note that this
time complexity also does not depend on the data size |T |.

D. Comparison of RML with MEL

Minimum entropy labeling (MEL) is a labeling scheme for
NCTs recently proposed in [1], which works as a preprocessor
for general compressors, such as the Huffman coding or
the LZ coding (i.e., pattern matching was not considered).
Similar to RML, MEL converts a sequence of road edges
to a low entropy sequence of small integers as follows:
w1w2 · · ·wn → ψ(w1)ψ(w2) · · ·ψ(wn) where ψ : E → N
is the MEL function. Different labels are assigned to road
segments that shares a head node v (Fig. 9(b)). In con-
trast, our RML conversion is as follows: w1w2 · · ·wn →
φ(w1|$)φ(w2|w1) · · ·φ(wn|wn−1). Unlike RML, the MEL
function ψ does not consider the previous symbol. Specifically,
As in Fig. 9(b), MEL labels based on the unigram frequencies,
nA and nB. Conversely, our RML, shown in Fig. 9(a), is based
on the bigram frequencies, nXA, nXB, nYA, and nYB.

Given these differences, the advantage of RML can be
intuitively explained as follows. Real trajectories tend to go
straight rather than turn left or right, as shown in Fig. 9 (a).
Because RML considers the previous road segment, it can
take account the direction of the movement, whereas such
information is lost in MEL. This implies that RML can capture
a higher-order correlation compared to MEL. Although MEL
also has the optimality of entropy, it cannot be better than
RML. The experimental comparison is shown in Section VI-D.
Mathematically, we have the following theorem.

Theorem 6: For any trajectory string T , RML achieves a
smaller 0th order empirical entropy than MEL does.

1To be exact, this complexity is proportional to b because practical
RRR [18] runs the bit-wise rank operation in O(b) time.
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Fig. 9. Comparing two NCT labeling methods: (a) RML; and (b) MEL [1]

Proof: Considering the size of the feasible labeling space,
we find that our labeling space {φ(w|w′)} is a superset of that
of MEL, {ψ(w)}. In other words, MEL can be emulated by
an RML φ̄ that might not be the optimal φ∗. Therefore, the
optimality of RML (Theorem 3) leads to the conclusion.

VI. EXPERIMENTS

A. Experimental setup

1) Implementation: All methods were implemented in C++
and compiled with g++ (version 4.8.4) with the -O3 option. We
used the sdsl-lite library (version 2.0.1) for (in-memory)
wavelet trees (http://github.com/simongog/sdsl-lite/). The BWT
was calculated using sais.hxx (http://sites.google.com/site/
yuta256/sais/). Experiments were conducted on a workstation
with the following specifications: Intel Core i7-K5930 3.5GHz
CPU (64-bit, 12 cores, L1 64kB×12, L2 256kB×12, L3
15MB), DDR4 32GB RAM, Ubuntu Linux 14.04.

2) Competitors: Table II lists the competitors used in this
paper. We used five FM-index variants: uncompressed (UFMI,
FM-GMR) and compressed (ICB-WM, ICB-Huff, FM-AP-
HYB). The block-size parameter b had to be specified for
CiNCT, ICB-Huff, and ICB-WM. Unless otherwise noted,
we use b = 63. FM-GMR [22] and FM-AP-HYB [23]
are FM-index variants that are tailored for huge σ and that
support O(log log σ) rank operation (faster than the O(log σ)
of UFMI); they are available in the sdsl-lite library. These
were the fastest (FM-GMR) and the smallest (FM-AP-HYB)
methods for huge σ in a recent benchmark [24].

There are many possibilities for compressing NCTs by
combining simple techniques such as run-length encoding.
However, we do not consider such techniques in this study
because pattern matching is not supported in sublinear time.
In our prior evaluation, the Boyer-Moore method (linear time
search) was at least four orders of magnitude slower than
CiNCT. In this study, we thus only consider RePair [25],
a standard benchmark in stringology which showed the best
compression ratio in the initial evaluation, and PRESS [26],
a shortest-path-based NCT compressor, and MEL [1], state-of-
the-art labeling-based NCT compressor. Note that the existing
NCT indexing methods, such as MON-tree [27], are not in
our competitors because they focus on neither suffix range
queries nor compression (as will be noted in Section VII, these
methods are enhanced by suffix range queries).

3) Measurement: The search time was averaged over 500
suffix range queries of length 20 randomly sampled from data.
For evaluation of the data size, the ET-graph was included.

4) Datasets: The datasets used in this study are as follows:
• Singapore: NCTs of taxi cabs used in [26]. This dataset

contains many transitions without physical connection.

TABLE II
OUR PROPOSED METHOD AND ITS COMPETITORS∗

Method Data Description C?† Q?‡

CiNCT φ(Tbwt) HWT with RRR
UFMI Tbwt WM� [17] with uncom-

pressed bitmap [11]
ICB-WM Tbwt WM with RRR [17]
ICB-Huff Tbwt HWT with RRR [16]
FM-GMR Tbwt FM-index for huge σ with

O(log log σ) rank [22]
FM-AP-
HYB

Tbwt FM-index for huge σ with
O(log log σ) rank [23]

PRESS T The state-of-the-art trajec-
tory compressor [26]

MEL T Min. entropy labeling [1]
Re-Pair†† T A string compressor [25]
∗

For the first four methods, the type of WT is described / � WM: wavelet matrix
† Uncompressed or compressed / ‡Supports suffix range query or not
†† We used an implementation at https://www.dcc.uchile.cl/˜gnavarro/software/

TABLE III
STATISTICS OF EACH DATASET

Dataset |T | lg σ H0(T ) H0(φ)† H1(T ) d̄ ‡

Singapore 53M 15.5 13.8 1.8 1.5 26.8
Singapore-2 75M 15.5 14.0 1.3 1.1 4.0
Roma 12M 15.5 13.0 0.9 0.7 2.4
MO-Gen 193M 17.4 13.0 2.8 2.5 8.8
Chess 20M 18.8 10.3 2.0 1.4 1.6
† H0(φ) means H0(φ(Tbwt))
‡ d̄ is the average out-degree of the ET-graph GT .

• Singapore-2: Preprocessed Singapore dataset such that
transitions between two road segments without a physical
connection are interpolated with the shortest path.

• Roma: GPS trajectories of taxi cabs in Rome. NCT
representations were obtained by HMM map-matching
[28] (http://crawdad.org/roma/taxi/).

• MO-gen: NCTs generated by the moving object genera-
tor (http://iapg.jade-hs.de/personen/brinkhoff/generator/).

• Chess: All chess game records (Blitz, 2006–2015, 1.87M
games, http://www.ficsgames.org). First 10 moves are
converted into hash values of Forsyth-Edwards notation.

Although Chess is not a vehicular dataset, it is included to
show the possibility that CiNCT is applicable to targets other
than NCTs. Table III lists the statistics of the datasets.

B. Comparison with various FM-indexes

Evaluation results for data size and processing time of
suffix range queries are shown in Fig. 10. We observe that
CiNCT requires less than 2 bits per symbol to store NCTs,
and pattern matching of length 20 is processed in a few tens of
microseconds. We also observe that CiNCT outperforms the
competitors in terms of both data size and query processing
time. We explain these results in detail below.

1) Data size: Compared with ICB-Huff and ICB-WM,
CiNCT reduces the data size by up to 78% and 57%, re-
spectively. As explained in Section V, the space overhead
decreases if H0(S) decreases. From Table III we can confirm
that H0(φ(Tbwt)) � H0(Tbwt) holds for all datasets (note
that H0(T ) = H0(Tbwt)). This explains why CiNCT shows
this significant improvement.CiNCT even shows better com-
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in Table II were omitted because their linear-time search was too slow.
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pression than the smallest variant FM-AP-HYB, which was
designed for huge σ. The improvement in Singapore-2 is
larger than that of Singapore. Because “gapped” transitions
are interpolated in Singapore-2, the ET-graph gets sparser
(d̄ =26.8→4 in Table III). This reduces the overhead regard-
ing the ET-graph (this is confirmed through the difference of
CiNCT and CiNCT (w/o ET-graph); w/o stands for without).

2) Processing time of suffix range queries: CiNCT is
always much faster than ICB-Huff and ICB-WM; the speedups
are up to 7 and 25 times, respectively. Surprisingly, CiNCT
is even faster than those of the uncompressed indexes (UFMI
and FM-GMR). Again, this speedup can be explained by the
shallowness of the HWT of CiNCT. This decreases the number
of bit-wise rank operations in the HWT (Section V-C).

3) Effect of block size b: As mentioned in Section III-C,
as b becomes larger, the results show better compression but
slower search. However, as shown in Fig. 10, the sensitivity
to the block size parameter b is very small for CiNCT. This
indicates that the proposed method is nearly parameter-free.

4) Effect of |P |: Figure 11 shows the processing time
of suffix range queries against the query length |P |. For
all methods, the processing time grows linearly, because the
numbers of iterations in Algorithms 1 and 3 are |P |. We see
that CiNCT shows the slowest growth among all methods.

C. Comparison with several compression methods

Table IV compares the compression ratio, defined as the
uncompressed size (binary file of 32-bit integers) divided by
the compressed size. We observe that CiNCT shows better
compression than the existing methods. In particular, our

TABLE IV
COMPRESSION RATIO (LARGER IS BETTER)

Singapore Singapore-2 Roma Mo-Gen Chess
CiNCT 10.5 27.0 25.2 25.6 10.3
MEL† N/A 15.8 21.2 N/A N/A
Re-Pair 8.4 11.4 20.6 20.6 11.0
ICB-WM 8.8 9.4 11.3 12.0 10.5
bzip2 5.3 5.6 13.6 5.3 7.1
PRESS‡ 4.6 N/A N/A N/A N/A
zip 2.5 2.5 5.0 2.6 3.9
† Huffman coding was used after labeling, as in [1]. We evaluated only for ungapped

datasets because MEL assumes no gap (see Singapore-2 explanation in Sec.VI-A4).
‡ Only the result for the Singapore dataset [26] is shown because no available

implementation was found.

TABLE V
COMPARISON OF ENTROPY (RML AND MEL)

Dataset RML (Proposed) MEL [1]
Singapore2 1.26 1.93
Roma 0.76 0.99

method is better than MEL, which showed the best compress-
ibility in recent benchmark [1]. This is explained as follows.
First, as shown in Theorem 6 (and Table V in the next section),
RML achieves smaller 0th order entropy than MEL (indicating
a smaller average code length). Second, CiNCT is a higher
order compressor (Theorem 4) whereas MEL is not. Note that
the road network storage is not included in MEL evaluations
whereas it is considered for CiNCT (as ET-graph).

D. Effect of labeling strategy

1) Comparison with MEL: According to our analysis in
Section V-D, RML achieves lower entropy than MEL does.
In Table V, we show a comparison of the entropy achieved

1106



Space (bits/symbol)

S
e

a
rc

h
 t

im
e

 (
µ

s)

2
0

2
1

2
2

2
3

2
0

2
1

2
2

2
3

2
4

2
5

2
6

b=15
b=31

b=63

b=15
b=31

b=15

b=31
b=63

MO−gen

Roma

Singapore

ChessBigram sorting (Proposed)
Random sorting

b=63
Singapore-2

Fig. 14. Comparison of labeling strategies

by RML and MEL for two “ungapped” NCT datasets, i.e.,
Singapore2 and Roma. We observe that our RML obtained
approximately 30% smaller entropy than that of MEL.

2) Optimality: In Section III-B, we proposed a labeling
strategy that assigns small integers cww′ sorted by the bigram
counts nww′ . The data size and search time under this strategy
are expected to be better than those of any other possible
labeling strategy, because we showed the optimality of our
strategy (Theorem 3). Here, we compare our strategy with
the random sorting strategy, which assigns randomly shuffled
small integers cww′ ∈ {1, · · · , |Nout(w′)|}. Figure 14 shows
the comparison for the five datasets (b ∈ {15, 31, 63}). We
observe that the index size and the search time of the bigram
sorting strategy are always better than those of random sorting
strategy. Compared to the random strategy, it reduces the data
size by up to 32%, and the search time by up to 57%. These
results indicate the importance of the bigram sorting strategy.

E. Effect of ET-graph size/shape

1) Effect of σ: In Theorem 5, we showed that the search
time of CiNCT does not depend on the size σ of the road
map. Here, we investigate the effect of σ using synthetic
RandWalk dataset: random walks on a directed random graph.
The average out-degree d̄ of the graphs is fixed at four, and
|T | is set to 800σ. In Fig. 12, CiNCT shows good scalability
against σ, whereas the index sizes and the search times of the
existing methods both increase. The search time of CiNCT
is almost constant, as predicted by Theorem 5. The other
methods do not show this property. For example, both the
index size and the search time of UFMI at σ = 218 are 30%
larger compared to the σ = 214 case.

2) Effect of sparsity: Here, we investigate the effect of
the average out-degree d̄. Figure 13 shows the results for the
RandWalk dataset used in Section VI-E. For comparison, we
fixed σ = 216 and |T | = 100M, and changed d̄ between 22

and 27. We observe that the sparsity of the ET-graph is the key
factor for CiNCT. Although the compression performance of
CiNCT is the best, the data size grows quickly. This is due to
two factors: the increase of ET-graph size and the increase of
the depth of HWT. However, this result shows that our method
works for larger d̄ than in the road network case, d̄ ' 22. This
result opens the door to applications to datasets not mentioned
in this paper (e.g., symbol-valued time series).

F. Sub-path extraction time

Here, we evaluate extract queries described in Section IV-C.
We evaluated the extraction time for obtaining the entire T ,
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that is, l = |T | and j = 0. Figure 15 compares the extraction
times for the four datasets. We observe that CiNCT shows
the fastest extraction among the competitors (twice as fast
as UFMI). Again, this can be explained by the fast rank
calculation in CiNCT (PseudoRank), as discussed above. Note
that we omitted the results for FM-AP-HYB because random
access to Tbwt was not supported in the sdsl-lite library.

G. Index construction time

Figure 16 compares the index construction times of FM-
indexes. The construction time of CiNCT is comparable to
that of ICB-Huff, and shorter than those of the other methods.
ET-graph-build in Fig. 16 includes all operations that are not
needed for the other methods. Here, we can see the overhead
for the construction of the ET-graph is not a serious problem.
Note that all additional operations, including the construction
of GT from T , obtaining RML function φ, labeling Tbwt, and
calculation of Zw′w, can be executed in linear time O(|T |),
which implies the scalability of construction.

VII. RELATED WORK

1) Trajectory indexing: One important application of our
method is trajectory indexing. Although there are numerous
studies on this topic as shown in a survey [29], we present only
the most relevant ones here. MON-tree [27] is one of the most
famous methods to index NCTs. This method, as well as many
of other NCT indexing methods, mainly focuses on spatio-
temporal range queries. Krogh et al. [30] proposed a data
structure similar to MON-tree designed for a different type
of query called strict path query (Sec. IV-D). Koide et al. [6]
showed that strict path queries can be efficiently processed
using suffix range queries. This is a hybrid data structure
that indexes timestamps and spatial paths using MON-tree-like
B+-trees and an additional FM-index, respectively. Brisaboa
et al. [3] also employed a compressed suffix array to store
spatial paths while a wavelet matrix was used for timestamps.
The existing compressed suffix arrays used in these methods
[3], [6] can be replaced with CiNCT.

2) Trajectory compression: As noted in Section I, shortest-
path encodings have been used to compress spatial paths in
several papers [1], [2], [4] and [26]. Although an NCT dataset
is expected to have a small k-th order entropy (Eq. (4)),
none of such shortest-path-based compressors have provided
an information-theoretic evaluation of the compressed size. As
an NCT compressor, our method first focuses on high-order
entropy and gives an information-theoretic bound (Theorem 4).
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One of the methods proposed in [1], MEL, is a different type
of spatial path compressor that achieves better compression
than shortest-path-based methods. As shown in Section V-D,
RML achieves a smaller entropy than MEL does. In [5], graph
partitioning was used to reduce the size of spatial paths.

To compress timestamps in NCTs, lossy compression meth-
ods are used in [1], [4] and [5], whereas lossless compression
was used in [3]. In Sec. IV-D, we have shown a method to link
these compressed timestamps to CiNCT through document
listing queries using small additional storage [20].

3) FM-index: FM-index, a compressed representation of
suffix arrays [7], was proposed by Ferragina and Manzini [8].
We have already described FM-index and the related topics in
Section II. Although there are a number of FM-index variants
(e.g., [15], [16], [22], [23]), these are essentially designed
for general strings. In Section VI, we compared our method
also with FM-indexes designed for a large alphabet [22], [23].
For large σ, these methods can process suffix range queries
in O(|P | log log σ) time, which is much faster than typical
O(|P | log σ) time. Importantly, we employed the domain-
specific knowledge of the target data (i.e., sparse transition
in road networks) to enhance the compression and query
processing. This point is the largest difference from the FM-
index family designed for general strings.

Recently, the Wheeler graph was defined to provide a
unified view on BWT-related methods [31]. Similar to the ET-
graph, this is also an edge-labeled graph. The differences are;
1) In the Wheeler graph, all edges entering a given node must
have the same label, while it is not necessary in the ET-graph.
2) In the ET-graph, the edges leaving a given node must have
different labels. It is not necessary in the Wheeler graph.

VIII. CONCLUSION

In this paper, we proposed CiNCT, a novel compressed
data structure for NCTs. We incorporated the sparsity of road
networks into the FM-index by using our proposed RML and
PseudoRank techniques. The resulting data structure supports
pattern matching (i.e., suffix range queries) and sub-path
extraction from an arbitrary position while still achieving
high compressibility. Our experiments showed that CiNCT
outperformed existing methods in terms of index size and
search time (Fig. 10, Table IV, and Fig. 12). Our method was
even faster than an uncompressed index. We also discussed
theoretically why CiNCT is compact and fast. Further, we
proved the optimality of RML, i.e., the smallest size and the
fastest search are achieved. Our method has wide applications
where pattern matching based on spatial paths is a key
component. We expect that our method is applied in practical
spatio-temporal systems in the future.
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[15] J. Kärkkäinen and S. J. Puglisi, “Fixed block compression boosting in

FM-Indexes,” in Proc. SPIRE’12, 2011, pp. 174–184.
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