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ABSTRACT
Data glitches are unusual observations that do not conform
to data quality expectations, be they logical, semantic or
statistical. By applying data integrity constraints, poten-
tially large sections of data could be flagged as being non-
compliant. Ignoring or repairing significant sections of the
data could fundamentally bias the results and conclusions
drawn from analyses. In the particular context of Big Data
where large numbers and volumes of feeds from disparate
sources are integrated, it is likely that significant portions of
seemingly noncompliant data are actually legitimate usable
data.

In this paper, we introduce the notion of Empirical Glitch
Explanations – concise, multi-dimensional descriptions of
subsets of potentially dirty data – and propose a scalable
method for empirically generating such explanatory charac-
terizations. The explanations could serve two valuable func-
tions: (1) Provide a way of identifying legitimate data and
releasing it back into the pool of clean data. In doing so, we
reduce cleaning-related statistical distortion of the data; (2)
Used to refine existing data quality constraints and generate
and formalize domain knowledge.

We conduct experiments using real and simulated data to
demonstrate the scalability of our method and the robust-
ness of explanations. In addition, we use two real world ex-
amples to demonstrate the utility of the explanations where
we reclaim over 99% of the suspicious data, keeping data
repair related statistical distortion close to 0.

1. INTRODUCTION
While much attention has been paid to identifying data

quality constraint violations and developing cleaning strate-
gies, there has not been much focus on whether all data that
is noncompliant should be subject to repair, and if all data
that violate a given constraint should be treated as a ho-
mogeneous set. By unnecessarily or incorrectly remediating
noncompliant data, there is a danger of changing the data
to such an extent that it is unrecognizable and su↵ers a high
statistical distortion as defined in [6]. Conclusions and in-
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Empl. Status Phone Dept. Room Super.
ID 1 Active 1AAA3600000 D4000 —— ID 4
ID 2 ——— 1AAA3600000 ——— —— ——
ID 3 Retired 1AAA3600000 D2200 E260 ID 6

ID 5 Active 1AAA3608776 D2300 A115 ID 9
ID 7 New Hire 1AAA3608776 D2300 D284 ID 5
ID 8 New Hire 1AAA3608776 D2300 B106 ID 5

ID 10 Active 1AAA3605519 D8000 A132 ID 13
ID 11 Active 1AAA3605519 D8000 A132 ID 13
ID 12 Active 1AAA3605519 D8000 A132 ID 13

Table 1: Sample data from a Human Resources database:
Employee ID, Employee Status, Phone number, Department
ID, Room Number, Supervisor ID. Three sets of duplicates
corresponding to three di↵erent phone numbers violate the
data quality constraint “Any given phone number must have
only one record associated with it.”

ferences drawn from over-treated and distorted data could
likely be misleading.

Given that data quality constraints tend to be fairly broad
and flag significantly large tracts of data as suspect, it is crit-
ical to study this data for additional, potentially explanatory
relationships in the data that could reduce the cost and dis-
tortion associated with cleaning, as well as add to our do-
main knowledge of the data. Data quality is so highly con-
text and domain dependent that any empirical method that
facilitates the gathering of domain knowledge, particularly
in Big Data scenarios, is valuable in itself.

In this paper, we provide evidence that significant portions
of data that seem to violate constraints have valid explana-
tions and can be released back into the clean pool of data
without being altered. Identifying empirical explanations
for seemingly suspicious data based on attribute patterns
is a valuable contribution to the data quality process that
preserves the original characteristics of the data, and to the
best of our knowledge, has not been addressed before. For-
malizing and generating domain knowledge, or suggesting
repair strategies are outside the current scope of the paper
and will be addressed in future research.

1.1 An Illustrative Example
For the purpose of illustration alone, we focus on a small

instance from the Human Resources (HR) database of a big
corporation. We will explore the example in detail in Sec-
tion 5.

In Table 1, we present nine records, each with six at-
tributes – Employee ID, Employee Status, Phone Number,
Department ID, Room Number, Supervisor ID. In principle,
a phone number is supposed to be unique and hence the at-



tribute should follow the constraint: “Any given phone num-
ber must have only one record associated with it.” However,
we found several duplicates. We discuss three instances here,
where each of the three phone numbers occurs three times.
We have changed the actual values for proprietary reasons
while preserving the attribute relationships.

In the first set of 3 duplicates corresponding to phone
number 1AAA3600000, there are five missing values. In the
second set corresponding to phone number 1AAA3608776, the
employees are from the same department. Furthermore, em-
ployee with ID_5 is the supervisor of the other two employ-
ees, both new hires. Finally, in the third set corresponding to
phone number 1AAA3605519, the three employees are again
from the same department. In addition, they are all in the
same room A132 and report to the same supervisor ID_13.

Note that even though each of the examples violates the
same constraint, namely “a given phone number must have
only one record associated with it”, it is possible that the
explanation could be di↵erent. The first set could represent
genuinely bad data or even a default value, since the set
contains other bad data (missing values). The second set
could reflect the legitimate use of the supervisor’s phone
number for new hires. Finally the third set could reflect
employees sitting in the same room A132 and hence sharing
a physical phone. If these explanations are consistent with
real world experience, we can return the second and third
sets (6 records = 67% of bad data) to the “clean” data pool
and modify the “no duplicates for a given phone number”
rule to include the two exceptions – namely, if the employees
are new hires and have the same phone number as their
supervisor, or if they sit in the same physical room.

Our goal in this paper is to empirically discover such
multi-attribute explanations for data quality violations. In
doing so, we enable data consumers to sift through data
glitches and identify positives that can be returned to the
clean data pool, at the same time refining data quality con-
straints to better reflect the changing nature of the data.
This is particularly important in the context of Big Data
analytics where not just the data, but also the rules that
govern them are in a state of flux, and where automation
and speed are of essence.

1.2 Related Work
Data quality is an active area of research with extensive

literature that covers a vast spectrum of topics. We briefly
mention a small subset here, and refer the reader to litera-
ture that takes a broader overview of data quality such as
the introductory [5] which focuses on an exploratory and
analytical approach, or the more recent [8] which provides
an overview of recent advances in the theory and applica-
tion of data quality, including data inconsistencies, data de-
duplication, characterizing incomplete data, and data cur-
rency models; and applications in automatically discovering
data quality rules, detecting errors in real-life data, and for
correcting errors with performance guarantees.

There has also been considerable interest in refining data
quality constraints. In [9], the authors focus on identify-
ing subsets of data that do not conform to consistency con-
straints that are specified in the form of functional depen-
dencies. They propose a method for automatically gener-
ating “tableaux” that either violate or satisfy a given con-
straint.

In [3], the authors propose a new data-driven tool that
focuses on the discovery of context-dependent rules and con-

ditional functional dependencies (CFDs) that almost hold.
The tool returns the rules together with the noncompliant
records. In subsequent work [4], the authors propose that
in contemporary data scenarios, the constraints themselves
evolve constantly as the underlying data processes change.
They describe a framework where the data and the con-
straints are modified in conjunction to minimize the cost of
repair.

Other work has focused on glitch patterns and correlations
[1] and introduced the idea of multi-type and multidimen-
sional glitches. The authors use glitch dependencies and
patterns for identifying data-driven cleaning strategies. In
[2], the authors propose a masking index to estimate the im-
pact of glitches hidden by masking (e.g. missing data mask
duplicates). The idea of statistical distortion, the distortion
in data caused by well-intentioned data repair e↵orts was
introduced as a critical criterion for measuring the utility of
data cleaning strategies in [6].

Our work is fundamentally di↵erent and novel and goes
beyond validating or modifying constraints. We aim to em-
pirically explain the violations in order to reduce the amount
of data to be be cleaned and modified. In fact, as we demon-
strated in our illustrative example, the same constraint (“du-
plicate phone numbers”) could generate di↵erent explana-
tions. Using the same repair for all data that violate this
constraint could introduce new data glitches where none ex-
isted. This is an important contribution because existing
literature makes no further distinction once the set of data
that violates a constraint has been identified. We do not
merely verify, validate or modify existing constraints, we
explain the constraint violations to redeem good data, and
lay the groundwork for the refinement of existing constraints
and automatic generation of new constraints.

1.3 Our Contributions
In this paper, we turn our attention to the fundamental

task of explaining seemingly anomalous data by empirically
discovering patterns, and characterizing subsets that can be
returned to the clean data pool, thus reducing the statistical
distortion induced by unnecessary repairs. We:
(1) Introduce the novel and important notion of explainable
glitches which are seeming violations that can be collectively
described by a succinct empirical description. Such descrip-
tions have the potential to explain the glitches, either by
consulting subject matter experts (“supervisor’s phone num-
ber used initially for new hires”) or other heuristics “shared
physical device in a shared room”). The explanations could
serve two valuable functions:
- (a) Provide a way of identifying legitimate data and releas-
ing it back into the pool of clean data. In doing so, we reduce
statistical distortion of the data induced be misguided data
repair;
- (b) Used to refine existing data quality constraints and
generate and formalize domain knowledge.
(2) Propose a robust and scalable method for empirically
generating the explanations by developing the new notion
of crossover subsampling to create subsets that are similar
to the noncompliant set. In doing so we reduce the redun-
dancy of the resampling procedure caused by the disparity
in sizes between dataset D and the suspicious subset A and
ensure that our results are statistically significant. In ad-
dition, we define two objective metrics, size and merit, for
evaluating and ranking the explanations. The metrics make
the method flexible and customizable depending on the ap-



plication. Such flexibility is key to a highly domain depen-
dent task like data cleaning.
(3) We evaluate the methodology within a comprehensive
experimental framework using real and synthetic data sets,
and explore the robustness and scalability of explanations.
In one real data instance, we are able to reclaim 99% of the
data flagged as suspicious, reducing the potential statistical
distortion considerably.

In this paper we focus on the notion that data that vio-
late constraints can be explained and reclaimed for normal
use without any alteration, thus preserving the authentic-
ity of the original data. Generating and formalizing domain
knowledge is outside the current scope and will be addressed
in future work.

1.4 Paper Organization
The rest of the paper is organized as follows. In Section 2,

we introduce the problem and in Section 3, present our ap-
proach to solving it. We discuss our empirical framework in
Section 4. We present two real world case studies in Sec-
tion 5 and Section 6. Finally, we summarize our results and
identify future research in Section 7.

2. PROBLEM DESCRIPTION
Suppose that we are given a data set D with N rows

(records) and d columns (attributes), and a constraint C.
Constraints are rules (logical, semantic, statistical) that are
imposed on data, typically to ensure conformity to expecta-
tions about the data e.g. “social security numbers must have
9 digits”. Let the set A consist of all “suspicious” records in
D that violate C. In our illustrative example, D would be
the HR data, C would be the constraint “any given phone
number must have only one record associated with it” and
A would be the set of nine records in Table 1. In the ab-
sence of explanations, the problematic set Q that needs to
be cleaned is given by

Q = A.

Our objective is to reduce the size of set Q by identify-
ing portions of the set A that can be explained as “clean”
using characteristics derived from other attributes and data
values. By doing so, we cut the cost of cleaning and reduce
distorting the statistical properties of the original data. A
cleaning process typically changes the data by making an
educated guess about the correct values. By adopting a fru-
gal cleaning approach, we preserve more of the original data
and stay faithful to the original statistical properties of the
data.
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Figure 1: Given a data set D, and a subset A of potentially
suspicious data, we can compute propensity signatures for
every value v in A by estimating its propensity of occurrence
across the attributes {Ck}.

Briefly, we achieve our objective by generating empiri-

cal explanations E , each of which describes a set of records
P ✓ A. Explanations are typically of the form {sj}, where
sj describes a condition on a value vj in the suspicious set A.
For example, from the illustrative example in Section 1.1, for
the suspicious sets corresponding to the phone numbers in
parentheses, the following explanations were generated (we
drop the attribute identification when a value occurs only in
one attribute):
A (1AAA3600000) : E1 = {“blank” is frequent and occurs in
multiple attributes}
A (1AAA3608776) : E2 = { ID_5 in attributes 1 and 6,
New Hire, D2300 }
A (1AAA3608519) : E3 = { ID_13, A132, D8000 }
The empirical descriptions were then presented to an expert,
who provided a real world description:
E1 = {“blank” is frequent and occurs in multiple attributes
} ! “Bad data, needs remediation.”
E2 = { ID_5 in attributes 1 and 6, New Hire, D2300 }
!“Clean data : New hires assigned supervisor’s phone num-
ber.”
E3 = { ID_13, A132, D8000 } ! “Clean data : Members of
same department working for the same supervisor, sharing
a physical room, and a phone.”
Therefore, in our example, of the three suspicious sets, only
the one associated with 1AAA3600000 was truly problematic.

3. OUR APPROACH
We take a nonparametric approach to the problem. By

doing so, we ensure a general applicability that is agnostic
to any underlying data distributions. The main steps are:
(1) Identify the set A by applying the constraints C to the
data set D as shown in Figure 1. In the absence of further
explanation, the entire set A is deemed suspicious. We avoid
the word anomalous since our objective is to establish that
not all of A is anomalous.
(2) For each value v 2 A, generate a propensity signature s.
The signature is probabilistic and captures the propensity
of occurrence of a value v across all records and attributes
of A, as shown in Figure 1.
(3) Rank the signatures based on their suspiciousness, us-
ing statistical criteria. The significant signatures together
constitute an explanation

E = {sj}.
The signatures can be used collectively in a conjunctive, dis-
junctive or in some other manner to define the explanation.
(4) Apply the explanation E to A, to isolate the correspond-
ing set of records P of A.
(5) Quantify the e↵ectiveness of an explanation using its size
and merit in reducing the statistical distortion of impacted
records.

3.1 Suspicious Set
Given a data quality constraint C, we apply the constraint

to the entire data set D and identify A, the suspicious sub-
set of data violations. Identifying A is relatively easy for
obvious glitches like null missing values or exact duplicates.
However, it is non-trivial in more complex cases such as dis-
guised missing values [12] and where the glitches are masked
or hidden [2]. In addition, if the glitch detection is depen-
dent on thresholds, for example in outliers, then determining
A is even more task dependent. However, methods for for-
mulating C and determining A are outside the scope of this



paper. We assume that the data quality constraint C and
the resultant set of violations A are both clearly specified.

Definition 3.1. The set of records A in D (A ✓ D) that
violate the data quality constraint C constitute the suspicious
set.

Usually |A| << |D|, but as we will see in the case studies,
there could be exceptions. Let the “good” or non-suspicious
data be given by

A0 = D �A,

the complement of A with respect to the entire data set
D. Our objective is to identify values v 2 A that exhibit
di↵erent statistical behavior in A and A0.
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Figure 2: Crossover Subsampling: The suspicious set A of
size B = 3 is divided into b = 3 parts of crossover proportion
q = 1/3. Each part Ai is equivalent to a record Ri A by
construction. For each part Ri A of size M = B/b = 1, the
remaining B � M = 2 records Rj D are drawn randomly
from D�Ai and a subsample of size B = 3 is created. This
is repeated R = 3 times for each Ai, yielding R⇤b = 3⇤3 = 9
crossover subsamples in all.

3.2 Propensity Signatures
In order to capture the behavior of a value v in a set,

we propose propensity signatures. Let v be a value in A,
the suspicious set. Further, let pk be the probability of v
occurring in attribute Ck of A. Then,

Definition 3.2. The propensity signature of a value v in
set A is a d-dimensional vector given by

sA(v) = (p1, . . . , pk, . . . , pd), k = 1, . . . , d,

and captures the propensity of occurrence of v in A.

Analogously, the signature of v in A0 is given by:

sA0(v) = (P1, . . . , Pk, . . . , Pd), k = 1, . . . , d,

where Pk is the probability of occurrence of v across A0.
Note that propensity signatures di↵er from the traditional

joint density functions which focus on the joint occurrence
of di↵erent values in a record, while propensity signatures
focus on the occurrence of a value across all records and
attributes in a sample.

Since we do not know the distributions of v a priori, we

will use the empirical estimates of propensity signatures ds(v)
to identify the set of suspicious values V = {v} that have
statistically di↵erent signatures in the suspicious data set A
compared to the “good” data A0.

For example, given the suspicious set A of duplicate phone
numbers corresponding to phone number 1AAA3608776 dis-
cussed in Section 1.1, the estimated propensity signatures
are:

\sA(ID5) = (1/3, 0, 0, 0, 0, 2/3)

and

\sA(NewHire) = (0, 2/3, 0, 0, 0, 0).

We describe the empirical estimates in detail in Section 4.2.
We wish to demonstrate that not all suspicious values are
necessarily “dirty”, and can be reclaimed without cleaning
or altering in any way.

3.3 Statistical Significance
How do we determine whether the propensity signature

of a value is statistically significant? One approach would
be to compute the distances of propensity signatures of all
values in A from the corresponding value signatures in the
good set A0, and rank the values based on the signature dis-
tances. The values with the greatest signature distances (say
top 10%) could be considered statistically di↵erent. How-
ever, the problem with this approach is that the signatures
of di↵erent values are not comparable, nor the distances be-
tween them. The signature of a common numeric value like
0 that spans multiple attributes and serves both as a real
value as well as a default, is bound to be di↵erent from that
of a specific character string like“Florida”, for example. The
relative ranking of signatures and distances of di↵erent val-
ues might be distorted by inherent di↵erences in the way the
values are used.

3.3.1 Crossover Subsampling

An alternate approach is to use resampling, where we
draw samples repeatedly, compute propensity signatures of
a given value in each sample, and construct a sampling dis-
tribution of the propensity signatures. From the sampling
distribution, we can infer the expected signature of the given
value, as well as the expected variability in its signature. Re-
sampling is an established technique for capturing the vari-
ability of statistical and empirical estimates, see [7] and [11].
Since all the signatures in the sampling distribution pertain
to the same value, the question of comparability does not
arise.

In addition to the comparability of propensity signatures,
we need to ensure that the signatures are computed from
like sized data sets. The size of the set influences the vari-
ability of statistical estimates, and when we compare the
propensity signature of a value from the suspicious set A,
it is important to draw sample sets of similar size. This is
achieved through subsampling, i.e. choosing a sample of a
smaller size from a bigger sample, and in our particular case,
choosing a subsample the same size as A from the good set
A0 = D �A.

However, A is significantly smaller than D, and therefore
A0, because we expect the suspicious set of data quality vio-
lations to be fairly small. This makes random subsampling
unsuitable for our purposes where it is likely that many of



the subsamples drawn from A0 will not capture the values
in the records of A, and therefore make no contribution to
the sampling distribution estimation. We would like to con-
struct specialized subsamples that share some characteristics
of A, in addition to being like-sized.

We accomplish this by proposing a novel subsampling
technique called crossover subsampling. Note that crossover
subsampling described below is di↵erent from stratified sub-
sampling, where the subsample is drawn randomly and pro-
portionally from each of the classes of interest, for example,
A and D � A. However, with crossover subsampling, we
are guaranteed that every record in A is represented in a
specified proportion of the subsamples.

Definition 3.3. A q-crossover subsample of size B drawn
from two sets D and A ⇢ D where the size of set A is
|A| = B, is defined to be a set that contains q proportion of
samples from A, and the rest from D �A, and every record
in A occurs in exactly q proportion of the subsamples.

A q-crossover subsample is constructed as follows. In the
absence of any prior knowledge, we partition A (size B)
into b = 1/q chunks of size M = B/b, denoted by A =
A1 +A2 + . . .+Ab , and cross each piece Ai with a random
piece of size B�M drawn from D�Ai to create a like-sized
sample of size B. We replicate this process R times, holding
Ai fixed but drawing randomly without replacement from
D�Ai. This yields R samples of size B corresponding to Ai.
We then compute the sampling distribution of propensity
signatures of each value v in Ai from these R replications

corresponding to chunk Ai, denoted by \FAi(v).

We test the estimated signature \sA(v) against \FAi(v), and
establish whether that particular value has a statistically
di↵erent pattern of occurrence in Ai using the method de-
scribed in Section 3.3.2. Each chunk Ai then gets to vote on
the suspiciousness of the value v.

Definition 3.4. A value v in set A is voted to be sus-
picious with respect to the empirical sampling distribution
\FAi(v) corresponding to chunk Ai of A if it is statistically
significant with respect to that distribution. The vote is de-
noted by the indicator function IAi(v) which takes the value
1 if significant, 0 otherwise.

We repeat this step with each of the b pieces of A. Each
chunk yields a vote IAi(v) for each value v. The more votes
a value has, the more confident we are about its significance
and the more informative it is in an explanation.

Definition 3.5. The informativeness of a value v is mea-
sured by the proportion of votes

K =
X

i

IAi(v)/b.

In summary, the crossover sampling process results in a total
of T = R ⇤ b samples of size B, and a collection of empirical

sampling distributions { \FAi(v)}bi=1 corresponding to the b
chunks {A1, . . . , Ab}, each of which gets one vote for each
value v.

We demonstrate the process in Figure 2, where:
B (subsample size, same as size of suspicious set A) = 3,
b (number of chunks) = 3,
M (chunk size) = B/b = 1,

q (crossover proportion) = 1/b = 1/3,
R (the number of replications) = 3, and
T (the total number of subsamples) = R ⇤ b = 9.

In the process described above, all the R replications cor-
respond to a given partition of A = A1 + A2 + . . . + Ab

into b chunks. We could make the process more general by
spreading the number of replications R over a small number
of randomized partitions of A. For example, we could run
R/5 replications for a given partition A = A1+A2+. . .+Ab,
another R/5 replications for A = B1 + B2 + . . . + Bb and
so on until a final R/5 replications for the fifth partition
A = E1 + E2 + . . . + Eb. This would make it possible to
combine the votes from each chunk with greater generality.

3.3.2 Testing for Statistical Significance

We flag a value v as significant if its propensity signature
lies outside the chosen error bounds of its corresponding

sampling distribution \FA(v). These bounds are computed
component-wise for each attribute. We compare each el-
ement of the signature with the corresponding bootstrap
distribution and if any element lies above or below the cho-
sen bounds, (mean ± 2 standard deviations; 95% and 5%
percentiles), we declare the signature to be significant. For
example, consider the propensity signature

\sA(ID5) = (1/3, 0, 0, 0, 0, 2/3)

from our illustrative example. The following error bounds
are based on the mean ± 2 standard deviations (hence the
negative and fractional values of the bounds) of the boot-
strap sampling distribution corresponding to ID5 :

Lower (5%) Bound: (-0.18, 0, 0, 0, 0, 0.44)
Upper (95%) Bound: (0.2, 0, 0, 0, 0, 0, 1.80).

Now, given that \sA(ID5)’s first component corresponding
to component (attribute 1), 1/3=0.33 is above the upper
bound 0.2 for the corresponding component, we declare the
value ID5 to be significant even though for component (at-
tribute) 6, 2/3=0.67 lies within the interval [0.44,1.8].

We use statistically significant propensity signatures that
have been identified in this manner to construct explana-
tions.

3.4 Glitch Explanations
Let the collection of values v in A with statistically sig-

nificant signatures be V = {v1, v2, . . . , vL}.

Definition 3.6. A glitch explanation E ✓ V is a collec-
tion of values in A that have statistically significant propen-
sity signatures.

For example, for the suspicious set A of duplicate phone
numbers corresponding to phone number 1AAA3608776 dis-
cussed in Section 1.1, the estimated signatures of ID5 and
NewHire are significant and lead to the explanation: E =
ID5, NewHire.

Note that explanations need to be human interpretable
(vetted by domain experts), and therefore the more suc-
cinct they are, the easier to understand and explain. To
capture this aspect, we introduce the notion of the size of
an explanation.



Definition 3.7. The size S(E) of an explanation is the
smallest number of informative, non-redundant values in the
explanation.

We can use a threshold on the informativeness (Definition 3.5)
i.e. K > ↵ for including a value v in an explanation, provid-
ing a measure of flexibility and customizability to the data
consumer.

In addition, the set of values with propensity signatures
that are significant could exhibit redundancy. For instance,
when one value implies another, as in given a zip code, state
and city are (in general) redundant. Or, if two values have
a one-to-one relationship and always occur together in ev-
ery record of the suspicious set A, then one of them is re-
dundant. For example, there might be two ways of identi-
fying a department, by a unique organizational code such
as “DEPT007” and by a unique name like “Department of
Shaken, Not Stirred”, both of which always occur together
in a record. Finally, values such as blanks and proper names
are usually not informative and do not contribute towards
a general explanation. They could be dropped. Note that
there are always exceptions to these general rules, (e.g. when
a zip code spans multiple cities), and we need to exercise
caution in making these judgements.

3.5 Evaluating an Explanation
We measure the e�cacy of an explanation by the statisti-

cal distortion of the data prevented by reclaiming the data
corresponding to the explanation. Statistical distortion can
be measured in many ways, from simple measures like dif-
ference in aggregates such as means and medians, to more
complex measures such as the histogram distance between
two data sets D and D0. Di↵erent ways of measuring sta-
tistical distortion, including the Earth Mover Distance, are
described in [6].

For the purpose of this paper, we use the general notion
of the proportion of records that are touched by data repair.
This is because any other metric, such as histogram distance,
would need a knowledge of the actual repairs and changes
made to the data. Since our focus is on explaining glitches
and not statistical distortion per se, this general notion is
enough for the purpose of illustration.

Any records that are reclaimed by glitch explanations and
left untouched, result in a reduction in the statistical distor-
tion caused by cleaning. Let S be the reclaimed set with
size |S|. Then, the reduction ⌧ in the statistical distortion
is given by:

⌧ =
|S|
|A| .

Definition 3.8. The merit ⌧ of an explanation E is the
reduction in statistical distortion caused by reclaiming the
records explained by E.
For instance, we can reclaim 6 of the 9 suspicious records in
the example of Section 1.1, resulting in a merit of

⌧ = 6/9 = 0.667.

4. EMPIRICAL FRAMEWORK
From the preceding discussion, it is is clear that our ap-

proach for generating signatures and explanations is data-
driven and necessarily requires a rigorous experimental basis
to ensure the validity of the empirical results. We describe
the experimental framework.

4.1 Identifying the Suspicious Set
For the purpose of this paper, we assume that identifying

the suspicious set A of data quality violations is simply a
matter of testing well-defined constraints. However, it is
likely that identifying A might involve uncertainty, in which
case we might need an empirical approach, as in the case of
disguised missing values [10].

4.2 Constructing Propensity Signatures
Each of the sets A and D �A contain a collection of dis-

tinct values. We construct the empirical estimates of the
propensity signatures described in Section 3.2 in a single
pass over the data, for each distinct value in A and D � A.
Let A have NA rows (records). Suppose that v occurs nk

times in column (attribute) Ck in the suspicious set A. Let

bpk = nk/NA,

be an empirical estimate of the probability pk. For example,
in Figure 1, an estimate of the propensity signature of v is
given by:

\sA(v) = (0, 2/3, 2/3, 1/3, 3/3, 0).

Similarly, the estimated propensity signature of v in A0 =
D �A is given by

\sA0(v) = (cP1, . . . ,cPk, . . . ,cPd), k = 1, . . . , d,

where cPk = mk/NA0 , mk is the number of occurrences of v
in attribute Ck of A0 , NA0 is the number of rows (records)
in A0. Note that bpk = nk/NA is the maximum likelihood
estimate (MLE) [13] of the true probability pk that v will

occur in the kth column (attribute) of A, and similarly cPk =
mk/NA0 is the MLE with respect to Pk, the probability that
v will occur in the kth column (attribute) of A0.

4.3 Resampling and Subsampling
Once we have identified A and A0 = D � A, we need

to isolate values v 2 A that help us to statistically di↵er-
entiate A from A0, in order to explain the suspiciousness.
We accomplish this using crossover subsampling discussed
in Section 3.3.1.

In our experiments in this paper, we used a thousand boot-
strap replications (R = 1000) to generate a 1000 signatures
for each value v 2 A. Note that the actual signature con-
tributed by the suspicious set A is included in the 1000. We
flag value v to be significant if any element in its signature
lies outside the error bounds computed from the sampling
distribution using the 1000 bootstrap signatures. For the
rest of this paper we use quantile based error bounds at the
0.005 level of significance. The results in the case studies
in Sections 5 and 6 are based on a crossover proportion of
q = 0.1, except in one set of experiments where we vary the
crossover proportion. The computation was performed in 10
parallel R language batch jobs on a cluster of Intel multi-
core Xeon processors (2.53GHz) running Scientific Linux 5.5
operating system.

5. ORGANIZATIONAL DATA
Our first real world data consisted of the Human Re-

sources database of a large company. It contained 50,084
records, each record with 17 attributes. Our data quality
constraint was “Given any telephone number, there should
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Figure 3: (a) For the case study in Section 5, the distribution of the size of suspicious sets; (b) The change in the size of
explanations with crossover proportion q. For the suspicious set of +1 (BBB) 999-9999 (shown as blue dashed curve), the size
of the explanations increases with the crossover proportion. For the suspicious set of FFF7474014 (shown as solid red curve),
the size of the explanation is very steady, implying a well-defined succinct set.

be only one record”. Note that validating this constraint
involves multiple records. When we applied the constraint,
we found that 14,872 (29%) records were in violation, gener-
ated by 530 distinct phone numbers, each of which gave rise
to a suspicious set of duplicates. The sets came in 54 dis-
tinct sizes. Only a handful of suspicious sets had significant
sizes, most had fewer than 100 records, considerably fewer
than the overall set size of 50K records. The distribution
of the size of the suspicious sets is shown in Figure 3(a),
where the X-axis is the size of the suspicious set and the
Y -axis the number of suspicious sets with that size. The
axes are staggered with variable scales for better readabil-
ity. Only two sets have more than 1000 records, and most
have fewer than 50 records, with suspicious sets with just 2
records accounting for more than 100 such sets.

We list the 5 most duplicated (anonymized) phone num-
bers in Table 2. While we have anonymized the actual values
for proprietary reasons, the explanations are real. It is in-

Phone number Size of A
+1 (BBB) 999-9999 8011
+ CCC9999999 2209
+1 (DDD) 392-2600 619

538
+1 (EEE) 000-0000 475

Table 2: Top 5 most duplicated (anonymized) numbers in
the HR Database

teresting that at first glance, the worst o↵enders (with the
exception of +1 (DDD) 392-2600) seem to be bogus phone
numbers used as defaults.

Let us first consider the explanation corresponding to the
non-trivial duplicate phone number 1 (DDD) 392-2600 which
is duplicated 619 times. It is given by:

E (1 (DDD) 392-2600) = { MeanBoss, USA, HERMAJESTY’S
CUSTOMER SERVICE, MIRAMAR, FL, C, Contractor, Bogus
Co., =33027, LAKESIDE DR STE 620 }

The signature provides an interesting explanation. The phone
number corresponds to Contractors that work for the com-
pany Bogus under supervisor MeanBoss, and are located at

LAKESIDE DR STE 620, MIRAMAR, FL, 33027, USA, all shared
the phone number 1 (DDD) 392-2600, and were dedicated
to working on HER MAJESTY’S CUSTOMER SERVICE. It is a
centralized o�ce number, and is therefore acceptable as a
duplicate.

Similarly, consider the explanation for the phone number
1 (EEE) 000-0000 duplicated 475 times:

E (1 (EEE) 000-0000) = { USA , C, SuperBoss, WESTLAKE
VILLAGE , Q’s SOLUTIONS, TX , Shady Marketing, MI, Fishy
Co. , CA , =91361, =76054, TOWNSGATE RD, NORWOOD
DR }

The phone numbers corresponds to employees that work for
supervisor SuperBoss, and were contracted from the com-
panies Fishy Co. or Shady Marketing, to work on Q’s SO-
LUTIONS and given the default phone number of 1 (EEE)
000-0000.

The explanation for the worst o↵ender +1 (BBB) 999-
9999, after removing redundancies like blanks and other
values like states and cities, consisted of 18 zip codes, corre-
sponding to locations of contractors working across the USA.
The zip codes appeared only in this suspicious set and not
in any of the other suspicious sets, making them distinctive.

These examples show that while the phone numbers were
“dirty” and violated a constraint, the other attributes pro-
vide enough of an explanation for us to trust that data and
reclaim it for regular use. With just the five suspicious sets
described in Table 2, we were able to reclaim 11,852 of the
14,872 duplicate records.

5.1 Reclaiming data with Explanations
In general, explanations consisting of between 3 to 20 val-

ues are ideal. Very small explanations might not be specific
enough (e.g. “USA”), and those with too many values might
be hard to interpret. Sometimes, by relaxing the threshold
K from 1 to 0.8, we found more useful explanations.

On other occasions, despite our best e↵orts, the explana-
tions were not useful. Consider the one associated with a
small suspicious set of 29 duplicates.
E (1 0) = { C }
Clearly, even the phone number 1 0 is mangled. And
the significant value in the explanation, “C”, does not pro-



vide any useful information other than the fact that it is a
code associated with contractors. The locations were spread
across multiple cities in multiple countries, across multiple
services and supervisors. There was no discernible pattern.
Therefore we could not salvage these records.

In total, using our method we could explain all but around
70 records corresponding to suspicious sets of size 29, 16, 6,
and 2 (multiple sets) which did not garner enough votes
to pass confidence guarantees. Therefore, in this real world
case study, our explanations together reclaimed around 14,800
records and caused a total reduction in statistical distortion
of

X
⌧ = (14800)/14872 = 0.9951.

Therefore the collective merit of our explanations for the
Organizational data is 0.9951. Next, we ran experiments to
test various sampling parameters.

5.2 Experiment 1: Robustness of Explanations
To test whether the explanations for close variants of a

phone number are similar, we took a suspicious set and
created two syntactically di↵erent variants. One set corre-
sponding to FFF7474014 with |A|=298, and second set cor-
responding to FFF 747 4014 with |A|=30. We were gratified
that our method generated the same explanation for both,
namely:
E = { “M”, IIND, II, GURGAON, GRGNIIAF, DLF ATRIA
PHASE II GURGAON HARYANA, Desi Company, Contractor,
BOND CUSTOMER EXPERIENCE, C, =122 002 }

Therefore, from this we could infer that both sets of du-
plicate phone numbers corresponded to contractors from an
Indian company assigned to supervisor "M", and that the
two phone number were near-duplicates, but our method
was robust enough to generate the same set of values in the
explanation, despite the di↵erence in sizes of the suspicious
sets.

5.3 Experiment 2: Crossover Proportion
For our second experiment, we chose two suspicious sets

corresponding to two di↵erent phone numbers in the HR
data. The first suspicious set consisted of duplicates of +1
(BBB) 999-9999 and had 8011 records with 33,063 unique
values. The second suspicious set consisted of duplicates of
FFF7474014 and had 298 records with 1,364 unique values.
We varied q = (0.05, 0.1, 0.2, 0.5) and measured three quan-
tities for each of the two suspicious sets: (1) the number of
significant values that got at least one vote from the b = 1/q
chunks, (2) the size of the explanation defined as the num-
ber of values within each proportion q that got a unanimous
vote, i.e. K = 1 from Definition 3.5, and (3) the number of
“clean” values in the explanation that got a perfect vote of
K = 1 for all four values of the crossover proportion q.
Figure 3 (b) shows the size of the explanations with each

crossover proportion. The X-axis shows the crossover pro-
portion q, the Y -axis shows the size of the explanation. In
this particular discussion, the size is based solely on votes,
and not on redundancy. We chose to keep the redundant
values in order to maintain comparability since they will be
consistently included in all signatures. In Figure 3(b), the
suspicious set of +1 (BBB) 999-9999 (shown as blue dashed
curve) had 283 significant values of which 100 were unan-
imous in all the proportions. The size of the explanations

increases with the crossover proportion, almost doubling.
This indicates that there is no succinct explanation, it just
expands as the bootstraps include more and more of the
suspicious set. (Most of these were redundant values like
geographical states and “USA”. As noted above, we reduced
these to 18 non-redundant values of zip codes.) The sus-
picious set of FFF7474014 (shown as solid red curve) had
36 significant values of which 13 were unanimous in all four
proportions. The size of the explanation is very steady, im-
plying a well-defined succinct set.

6. MOBILE TELEPHONY DATA
Our second example consists of mobile telephony data,

collected over a period of two weeks. We anonymized the
data by preserving the NPA (area code) of each phone num-
ber and hashing the 7 digit phone number in a consistent
fashion. Next, we aggregated the data by zip codes and into
15 minute bins. Each zip code was associated with a Metro
area. The variables of interest include number of calls made,
number of texts sent, number of calls dropped during set up,
and number of calls dropped while the call was in progress.
The aggregated data set had 27,291,446 records. A sample:

ZIP|UNIX-TIME|CALLS|BAD-1|BAD-2|TEXTS|METRO AREA
10001|1360231200|208|0|0|463|Manhattan
10001|1360232100|227|0|2|410|Manhattan

We suspect that some of the data might be erroneous for
reasons that are probably data quality related, rather than
anything to do with the actual network performance. A
rationale is outside the scope of this paper, but the data
quality constraint was specified by experts as:

CT <= .25,

where CT is the ratio of the sum of BAD-1 and BAD-2 calls to
the total number of calls handled. Any records that violated
this constraint i.e. CT > 0.25 were considered suspicious and
put in the set A. In reality, there were only 78,464 records
scattered across more than 27 Million records. Note that
this instance is (1) a valid case where |A| << |D|, and (2) an
example of a single-record constraint where each record can
be assessed for constraint violation independently of other
records.

Even though the suspicious records were scattered, we
wanted to study if we could (1) recover patterns if they ex-
isted in such large data of millions of records and (2) study
the impact of scale on our method. The mobility data used
in the following two studies study was synthetic data cre-
ated from the real mobility data described above, by inject-
ing suspicious data from the set A in a controlled manner.

Suspicious Zip Codes: We took 174,326 records corre-
sponding to the zip codes from metro areas labelled New
York, Other NYC Boroughs, Chicago, Chicago Loop and
San Francisco and created a test data set DT . This partic-
ular data set had no bad records at all. We simulated bad
data by injecting bad records from the suspicious set A into
the test data set DT . We selected the worst 6 zip codes from
A listed under the column “Worst Zip” of Table 3. These 6
zip codes contributed 1,517 bad records, and a total of 7,146
records. We then chose 6 zip codes in DT that had a similar
distribution of records as the 6 worst zips. We removed all
these records, and replaced them with all the records corre-
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Figure 4: Plots (a) and (b) show the run times of (1) creating the crossover samples (blue dashed line) and (2) computing the
signatures and the bootstrap sampling distribution (solid red curve) as the sizes of the good and bad data set vary. In (a) the
bad data set is fixed at 78000 while the good data set varies as shown on the X-axis. In (b) the sizes of both the data sets
vary. The two curves are measured on di↵erent scales (Y -axes), the red curve against the Y -axis on the left side, the blue
curve on the Y -axis on the right side of the plots. The numbers on the curve represent the number of unique values in the
bad data set.

sponding to the 6 worst zips. Finally, we mapped the actual
zip codes of the worst 6 zips to the zip codes of the records
that we removed from the data set DT . The mapping is
shown in Table 3. While mapping the zips is not necessary,
we do it for reasons of consistency to keep the zip codes
within the metro areas for interpretation purposes. Note
that the simulated bad zip codes correspond to the three
metro areas Chicago Loop, San Francisco and Manhattan.

The resulting data setDZIP now has 174,391 total records
with 1,517 bad records concentrated in 6 zips listed under
the column “Mapped To Zip” of Table 3. That is, if the bad
records occur in these zip codes, then they are not suspicious
since we put them there. Our method correctly gener-

Worst MappedTo MappedTo Total Suspicous
Zip Zip Metro Records Records

88434 60602 Chicago Loop 1329 395
80744 94119 San Francisco 1303 252
55925 10041 Manhattan 900 229
93225 60603 Chicago Loop 1344 220
03278 10020 Manhattan 1249 212
67481 94143 San Francisco 1021 209

Table 3: Zip mapping

ated the zip codes 94143, 94119, 60603, 60602, 10041,
10020 as significant values, each with 10 votes from each of
the randomizations. In addition, the following explanation
for the Metro areas were generated. The number of votes
are shown in parentheses: Chicago Loop(10), San Fran-
cisco(10) for the upper tail (significantly higher). Chicago
Loop and San Francisco are as expected due to the zip code
mapping, and are redundant to the zip codes. However, the
metro area Manhattan did not show up. This is because the
proportion of Manhattan was the same in the bad data as it
was in the good data. But this has no impact on our expla-
nations since Metro areas are redundant to the zip codes.

Therefore our minimal explanation is that bad records in
the following zip codes will not be considered “dirty” since
we expect them to be there.
E = { zip codes: 94143, 94119, 60603, 60602, 10041, 10020 }.

As a consequence, we are able to reclaim all the suspicious
records, resulting in a statistical distortion of 0. The merit
⌧ of our explanation is 1.

Had we not used the explanations, the statistical distor-
tion associated with the dirty data would have been
StatisticalDistortion = 1517/174391 = 0.0087.

Suspicious Time Periods: We simulated badly behaved
time periods in a manner similar to the zip codes. We took
the worst 6 15-minute time slots, namely 2.45 AM, 3.00
AM, 3.15 AM, 3.30 AM, 3.45 AM, 4.00 AM, from the mas-
ter file of 27 Million records. These contributed 7908 records.
We replaced the data corresponding to these time slots in

Time Suspicious Total
Slot Records Records

02:45 AM 1266 1338
03:00 AM 1247 1326
03:15 AM 1271 1322
03:30 AM 1212 1276
03:45 AM 1301 1356
04:00 AM 1229 1290

Table 4: Simulated time slots

the test dataset DT with the bad data. Table 4 shows the
total number of injected records corresponding to the time
slot, and the corresponding suspicious records contained in
them.

We derived the time and day of the week from the Unix
time stamp and generated the following explanations.
E = { Tue, Wed, Thurs, Sat, Sun; 2.45 AM, 3.00 AM, 3.15 AM,
3.30 AM, 3.45 AM, 4.00 AM }
Therefore, the explanation of the bad time periods holds for
5 days of the week, but doesn’t seem to include Mondays
and Fridays. Therefore the bad records corresponding to
these two days that fall in the 6 identified time slots, 1,090
and 1,148 respectively, cannot be explained. Therefore the
merit of our explanation is:

⌧ = (7908� (1090 + 1148))/7908 = 0.717.



6.1 Experiment 3: Size of Data Sets
Finally, we wanted to test the scalability of our method, in

terms of computation as well as robustness of explanations,
by varying the sizes of both the suspicious set A and the
good set A0 = D � A. We resampled from the mobility
data described at the beginning of this section to create the
following synthetic data. The experiments are summarized
in Figure 4 which features two Y -axes, on the left and right
side of the plotting frames, one for each of the two curves
that are measured on di↵erent scales. The X-axis denotes
the number of records in the good data set.

First, we kept the bad data set at the fixed size of 78,464
records (10,111 unique values) and varied the size of the
good data set from 1Million records to 2, 4, 8, 16 and 20
Million records. We split the task into two steps (1) cre-
ate the bootstrap crossover subsamples (dashed blue curve
in Figure 4 measured against the Y -axis on the right side
of the plotting frame) and (2) compute the signatures and
the corresponding sampling distribution from the bootstrap
samples (solid red curve in Figure 4 measured against the
Y -axis on the left side of the plotting frame). We found,
as expected, that creating the crossover subsamples from
the good data set to form the 1000 bootstrap samples took
longer with the increase in the size of the good data. In Fig-
ure 4(a), the dashed blue curve increases with the size of the
good data, measured against the second Y -axis on the right
side of the frame. The computation of the bootstrap sig-
natures and the sampling distribution depends only on the
size of the samples (fixed at 78000) and the number of boot-
straps (fixed at 1000). This is reflected in the solid straight
line at the top of the plot measured against the first Y -axis
on the left side of the frame. We also found that the set
of suspicious values, and hence the resulting explanations,
were the same in all cases.

Next, we changed the sizes of both the good and bad data.
The good data was varied just as above, but in addition we
varied the size of the bad data over 1250, 2500, 5000, 10000,
20000 and 40000 records. Number of unique values in the
bad set are denoted on the red curve. As expected, the
computing times increased with both the data set sizes, for
both the sample creation (dashed blue) and the signature
and sampling distribution computation (solid red). How-
ever, fewer suspicious values were deemed significant in the
instances with smaller bad data sets. This phenomenon was
mainly due to the smaller number of unique values in the
bad data records. For example, the smallest bad data set of
1250 records is about 1.5% of the original bad data set of
78,464 records. In addition, there is more uncertainty (vari-
ance) in the distribution of the bootstrap signatures for the
smaller bad data sets. Many of the values, even when sig-
nificant, fail the strict criterion of K = 1, i.e. all 10 blocks
generated by the q = 0.1 crossover proportion must vote for
the signatures.

7. CONCLUSION
In this paper, we introduced the notion of empirical glitch

explanations, which are data-driven, multi-attribute descrip-
tions of subsets of potentially dirty data. The explanations
are used by domain experts to decide whether the data is
genuinely dirty, or is acceptable based on the explanations.
The explanations reduce the amount of data subjected to
unnecessary repair, and reduce the statistical distortion in-
duced by cleaning. We evaluate explanations based on their

size, which is related to usefulness and interpretability, and
merit, the amount of statistical distortion prevented by the
explanations.

We described an empirical framework for generating glitch
explanations by proposing a novel subsampling technique
called crossover subsampling. We demonstrated the utility
of our approach based on real world data sets where we
could reclaim up to 99% of the data, and ran experiments
to demonstrate the scalability and robustness of our method.

A major thrust of our future work, which could have crit-
ical applications in Big Data, involves generating and for-
malizing the domain knowledge we learn from the glitch
explanations, in order to: (1) Reason with it and answer
questions e.g. “what is the most common explanation for
glitches in one organization vs another?” and (2) Analyze
explanations over time as new data gets added to under-
stand the temporal nature and frequency of glitch patterns.
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