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ABSTRACT
In this paper, we present Deep Graph Kernels, a unified frame-
work to learn latent representations of sub-structures for graphs,
inspired by latest advancements in language modeling and deep
learning. Our framework leverages the dependency information be-
tween sub-structures by learning their latent representations. We
demonstrate instances of our framework on three popular graph
kernels, namely Graphlet kernels, Weisfeiler-Lehman subtree ker-
nels, and Shortest-Path graph kernels. Our experiments on several
benchmark datasets show that Deep Graph Kernels achieve signif-
icant improvements in classification accuracy over state-of-the-art
graph kernels.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications - Data Min-
ing; I.2.6 [Artificial Intelligence]: Learning; I.5.1 [Pattern Recog-
nition]: Model - Statistical

Keywords
R-convolution kernels, graph kernels, deep learning, structured data,
string kernels, social networks, bioinformatics

1. INTRODUCTION
In domains such as social networks, bioinformatics, chemoinfor-

matics and robotics, we are often interested in computing similar-
ities between structured objects. Graphs, including sequences and
trees as special cases, offer a natural way to represent structured-
data. To illustrate one example where graph similarity can be use-
ful, consider the problem of identifying a sub-community (also re-
ferred as subreddits) on Reddit1. To tackle this problem, one can
represent an online discussion thread as a graph where nodes rep-
resent users, and edges represent whether two users interact, for
instance, by responding to each other’s comments (see Figure 12).

1Reddit is a popular content-aggregation website: http://
reddit.com.
2Image is created with Gephi: http://gephi.github.io.
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Then, the task is to predict which sub-community a discussion
thread belongs to based on its communication graph. Similarly,
in bioinformatics, one might be interested in the problem of iden-
tifying whether a given protein is an enzyme or not. In this case,
the secondary structure of a protein is represented as a graph where
nodes correspond to atoms and edges represent the chemical bonds
between atoms. If the graph structure of the protein is similar to
known enzymes, one can conclude that the given graph is also an
enzyme [33]. Therefore, computing semantically meaningful simi-
larities between graphs is an important problem in various domains.

Figure 1: A graph of a random post on http://reddit.com/
r/askreddit.

One of the increasingly popular approaches to measure the simi-
larity between structured objects is to use kernel methods. Roughly
speaking, kernel methods measure the similarity between two ob-
jects with a kernel function which corresponds to an inner product
in reproducing kernel Hilbert space (RKHS) [26]. The challenge
for kernel methods is then to find a suitable kernel function that
captures the semantics of the structure while being computationally
tractable. R-convolution [11] is a general framework for handling
discrete objects where the key idea is to recursively decompose
structured objects into “atomic” sub-structures and define valid lo-
cal kernels between them. In the case of graphs, given a graph
G, let φ (G) denote a vector which contains counts of atomic sub-
structures, and 〈·, ·〉H denote a dot product in a RKHS H. Then,
the kernel between two graphs G and G′ is given by

K
(
G,G′

)
=
〈
φ (G) , φ

(
G′
)〉
H . (1)
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(a) Dependency of sub-
structures

(b) Exponential growth

Figure 2: Dependency schema of a set of graphlets of size k ∈
{3, 4, 5} where G39 can be derived from G15 (similarly, G15 can
be derived from G7) by adding a new node and an edge (a). Ex-
ponential growth of feature space in graphlets up to size k = 9
(b).

However, this representation does not take a number of impor-
tant observations into account. First, sub-structures that are used to
compute the kernel matrix are not independent. Let us consider an
example on graphlets, a popular sub-structure type that is used for
decomposing graphs [23, 28], which are defined as induced, non-
isomorphic sub-graphs of size k (see Figure 4). Graphlets exhibit a
strong dependence relationship, that is, size k + 1 graphlets can be
derived from size k graphlets by addition of nodes or edges (sim-
ilarly, size k graphlets can be recovered by deletion of nodes or
edges from size k+ 1 graphlets). For instance, G39 can be derived
from G15 by adding a new node and an edge (see Figure 2 (a)).
Second, the dimension of the feature space often grows exponen-
tially. Figure 2 (b) illustrates the growth of the number of unique
features in graphlets as graphlet size k increases. Consequently, as
the number of features grows, we encounter the sparsity problem:
only a few sub-structures will be common across graphs. This leads
to diagonal dominance, that is, a given graph is similar to itself but
not to any other graph in the dataset. Figure 3 (a) illustrates such
a kernel matrix3 where diagonal dominance is visibly observable
using Weisfeiler-Lehman subtree kernel [27]. Ideally, we would
like to have a kernel matrix where all entries belonging to a class
are similar to each other, and dissimilar to everything else (see Fig-
ure 3 (b)). To alleviate this problem, consider an alternative kernel
between two graphs G and G′ such that

K
(
G,G′

)
= φ (G)TMφ

(
G′
)

(2)

whereM represents a |V| × |V| positive semi-definite matrix that
encodes the relationship between sub-structures and V represents
the vocabulary of sub-structures obtained from the training data.
Therefore, one can design anM matrix that respects the similarity
of the sub-structure space. In cases where there is a strong mathe-
matical relationship between sub-structures, such as edit-distance,
one can design an M matrix that respects the geometry of the
space. In cases where a clear mathematical relationship between
sub-structures might not exist, one can learn the geometry of the
space directly from data. In this paper, we propose recipes for de-
signing such M matrices for graph kernels. For our first recipe,
we exploit an edit-distance relationship between sub-structures and
directly compute anM matrix. In our second recipe, we propose
3In both cases we observe a block matrix since the first 125 entries
of the matrix correspond to graphs which are labeled as +1 and the
remaining entries correspond to graphs which are labeled as −1.

Figure 3: Kernel matrixK for Weisfeiler-Lehman subtree kernel on
the MUTAG dataset [7] (a), and its deep variant obtained from our
framework (b). Entry Kij encodes the similarity between graph Gi
and graph Gj and the color map encodes the degree of the similarity
(darker color indicates higher similarity).

a framework that computes anM matrix by learning latent repre-
sentations of sub-structures. Our contributions are as follows:

• We propose a general framework that learns hidden repre-
sentations of sub-structures used in graph kernels, inspired
by latest advancements in natural language processing and
deep learning,

• We demonstrate our framework on three popular graph ker-
nels, namely Graphlet kernels, Weisfeiler-Lehman subtree
kernels, and Shortest-Path kernels and achieve significant im-
provements on several benchmark datasets,

• We discuss the connection of our framework to R-convolution
kernels and apply our framework to derive deep variants of
string kernels,

• We introduce several new large graph kernel datasets in so-
cial network domain associated with novel tasks such as com-
munity prediction.

The rest of this paper is as follows. In Section 2, we review three
popular families of graph kernels for which our framework is appli-
cable. In Section 3.1, we design anM matrix for graphlet kernels
by exploiting edit-distance relationship between sub-structures. In
Section 3.2, we introduce deep graph kernel framework and dis-
cuss the connection of our framework to R-convolution kernels. In
Section 4, we discuss related work. In Section 5, we compare the
classification performance of deep graph kernels to their base vari-
ants as well as to other state-of-the-art graph kernels. We report
results on classification accuracy on graph benchmark datasets and
discuss the run-time cost of our framework. Section 6 concludes
the paper.

2. GRAPH KERNELS
We first introduce basic concepts and notation that will be used

throughout the paper. Then, we discuss three major graph kernel
families, namely, graph kernels based on limited-sized subgraphs
[13, 28], graph kernels based on subtree patterns [24, 27], and graph
kernels based on walks [14, 33] and paths [3]. We briefly discuss
each of the above kernels, and recap how they can be viewed as
instances of the more general R-convolution framework [11].
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Figure 4: Connected, non-isomorphic induced sub-graphs of size k ≤ 5.

2.1 Notation
Let G = (V,E) represent a graph where V is a set of vertices and

E ⊆ (V × V ) is a set of edges. Let G represent a set of n graphs
where G = {G1,G2, . . . ,Gn} and let Y represent a set of labels
associated with each graph in G where Y = {yG1 , yG2 , . . . , yGn}.
Given G = (V,E) and H = (VH , EH), H is a sub-graph of G
if and only if there is an injective mapping α : VH → V such
that (v, w) ∈ EH if and only if (α(v), α(w)) ∈ E. A graph G is
called a labeled graph if there is a function l : V → Σ that assigns
labels from an alphabet Σ to vertices in the graph. A graph G is
called an unlabeled graph if individual vertices have no distinct
identifications other than their inter-connectivity. Throughout the
paper, we will refer K(G,G′) as a kernel function that measures
the similarity between graphs G and G′.

Graph classification task considers the problem of classifying
graphs into two or more categories. Given a set of graphs G and a
set of class labels Y , the task in graph classification is then to learn
a model that maps graphs in G to the label set Y . A popular ap-
proach is to first use a graph kernel to compute a kernel matrix K
of size n × n where Kij represents the similarity between Gi and
Gj , and then to plug the computed kernel matrix into a kernelized
learning algorithm such as Support Vector Machines (SVM) [12]
to perform classification.

2.2 Graph kernels based on subgraphs
A graphlet G is an induced and non-isomorphic sub-graph of

size-k (see Figure 4) [23]. Let Vk = {G1, G2, . . . , Gnk} be the
set of size-k graphlets where nk denotes the number of unique
graphlets of size k. Given two unlabeled graphs G and G′, the
graphlet kernel is defined as follows [28]:

KGK(G,G′) =
〈
fG , fG

′〉
, (3)

where fG and fG
′

are vectors of normalized counts, that is, the ith

component of fG (resp. fG
′
) denotes the frequency of graphlet Gi

occurring as a sub-graph of G (resp. G′). Furthermore, 〈·, ·〉 denotes
the Euclidean dot product.

2.3 Graph kernels based on subtree patterns
The second family of graph kernels decomposes a graph into its

subtree patterns. The Weisfeiler-Lehman subtree kernel [27] be-
longs to this family. The key idea here is to iterate over each vertex
of a labeled graph and its neighbors in order to create a multiset
label. The multiset at every iteration consists of the label of the
vertex and the sorted labels of its neighbors. The resultant multiset
is given a new label, which is then used for the next iteration. When
comparing graphs, we simply count the co-occurrences of labels in
both graphs. This procedure is inspired by the Weisfeiler-Lehman
test of graph isomorphism, and is equivalent to comparing the num-
ber of shared subtrees between two graphs. Formally, given G and

G′, the Weisfeiler-Lehman subtree kernel is defined as:

KWL(G,G′) =
〈
lG , lG

′〉
. (4)

As before, 〈·, ·〉 denotes the Euclidean dot product. If we assume
that we perform h iterations of relabeling, then lG consists of h
blocks. The ith component in the jth block of lG contains the
frequency with which the ith label was assigned to a node in the
jth iteration.

2.4 Graph kernels based on random-walks
The third family of graph kernels decomposes a graph into random-

walks [14, 33] or paths [3] and counts the co-occurrence of random-
walks or paths in two graphs. Let PG represent the set of all shortest-
paths in graph G, and pi ∈ PG denote a triplet (lis, l

i
e, nk) where nk

is the length of the path and lis and lie are the labels of the starting
and ending vertices, respectively. The shortest-path kernel between
labeled graphs G and G′ is defined as [3]:

KSP (G,G′) =
〈
pG ,pG

′〉
, (5)

where the ith component of pG contains the frequency of the ith

triplet occurring in graph G. The vector pG
′

is defined analogously
for G′.

2.5 A Unified View using R-convolution
One can show that all graph kernels summarized above as well

as other somewhat sophisticated variants are all instances of the
R-convolution framework. In a nutshell, the recipe for defining
graph kernels is as follows: First, recursively decompose a graph
into its subgraphs. For instance, the graphlet kernel decomposes
a graph into graphlets, Weisfeiler-Lehman kernel decomposes a
graph into subtrees, and Shortest-Path kernel decomposes a graph
into shortest-paths. In next step, the decomposed sub-structures are
represented as a vector of frequencies where each item of the vec-
tor represents how many times a given sub-structure occurs in the
graph. Finally, the Euclidean space or some other domain-specific
RKHS is used to define the dot product between the vectors of fre-
quencies.

3. METHODOLOGY
In this section, we first discuss how to compute anM matrix by

using the edit-distance relationship between sub-structures. Then,
we discuss how to compute anMmatrix by learning the similarity
between sub-structures inspired by latest advancements in language
modeling and deep learning.

3.1 Sub-structure similarity via edit-distance
When sub-structures exhibit a clear mathematical relationship,

one can exploit the underlying similarities between sub-structures
to compute an M matrix. For instance, in graphlet kernels, one
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Figure 5: Undirected edit-distance graph G for graphlets of size
k ≤ 5 (size and colors of the nodes are based on degree).

can derive an edit-distance relationship to encode how similar one
graphlet to is another (see Figure 2 (a)). Given a graphlet Gi of
size k, and a graphlet Gj of size k + 1, let us build an undirected
edit-distance graph G by adding an undirected edge from Gi to
Gj if and only if Gi can be obtained from Gj by deleting a node
of Gj (or vice versa, if Gj can be obtained from Gi by adding a
node to Gi). Given such an undirected graph G, one can simply
compute the shortest-path distance between Gi and Gj in order to
compute their edit-distance (see Figure 5). While this approach
enables us to directly compute anMmatrix, the cost of computing
the shortest-path distances on G becomes prohibitively expensive
as a function of graphlet size k (see Figure 2 (b)). For instance,
in order to compute an M matrix at level k = 9, one needs to
compute all pairwise shortest-path distances of an undirected graph
having 288, 267 nodes. On the other hand, one can observe that
while the number of unique graphlets grow exponentially, only a
few of them will be observed in a given graph. Therefore, instead
of computing a completeMmatrix of size |V|×|V|, one can design
anMmatrix of size |V ′|× |V ′| with |V ′| � |V| by only taking the
observed sub-structures into account. In next section, we discuss
an approach that utilizes this observation.

3.2 Sub-structure similarity via learning
Our second approach is to learn the latent representations of

sub-structures by using recently introduced language modeling and
deep learning techniques. The learned representations are then uti-
lized to compute anM matrix that respects the similarity between
sub-structures. Next, we review the related background in language
modeling, and then transform the ideas to learn representations of
sub-structures.

3.2.1 Neural language models
Traditional language models estimate the likelihood of a sequence

of words appearing in a corpus. Given a sequence of training words
{w1, w2, . . . , wT }, n-gram based language models aims to maxi-
mize the following probability

Pr(wt|w1, . . . , wt−1). (6)

In other words, they estimate the likelihood of observing wt given
n previous words observed so far.

Recent work in language modeling focused on distributed vector
representation of words, also referred as word embeddings. These
neural language models improve classic n-gram language models
by using continuous vector representations for words. Unlike tra-
ditional n-gram models, neural language models take advantage of

Figure 6: Architecture for the CBOW and Skip-gram method [20].
wt is the current word, while wt+j are the surrounding words
where c is the size of the context, and −c ≤ j ≤ c. Here, CBOW
architecture predicts the current word based on the context, and the
Skip-gram predicts surrounding words given the current word.

the notion of context where a context is defined as a fixed number
of preceding words. In practice, the objective of word embedding
models is to maximize the following log-likelihood

T∑
t=1

log Pr(wt|wt−n+1, . . . , wt−1), (7)

where wt−n+1, . . . , wt−1 are the context of wt.
Several methods are proposed to approximate Equation 7. Next,

we discuss two such methods that we utilize in our framework,
namely continuous bag-of-words (CBOW) and Skip-gram models
[20].

3.2.2 Continuous bag-of-words
CBOW model predicts the current word given the surrounding

words within a given window. The model architecture is similar
to feedforward neural network language model [2] where the non-
linear hidden layer is removed and the projection layer is shared for
all words (see Figure 6). Formally, CBOW model aims to maximize
the following log-likelihood,

T∑
t=1

log Pr(wt|wt−c, . . . , wt+c), (8)

where c is the length of the context. The probability Pr(wt|wt−c, . . . , wt+c)
is computed using the softmax, defined as

exp(v̄>v′wt
)∑V

w=1 exp(v̄>v′w)
. (9)

Here, vw corresponds to the input vector representation of w and
v′wt

corresponds to the output vector representation of wt. The
averaged vector representation from the context is computed as

v̄ =
1

2c

∑
−c≤j≤c,j 6=0

vwt+j . (10)

3.2.3 Skip-gram model
The Skip-gram model maximizes co-occurrence probability among

the words that appear within a given window. In other words, in-
stead of predicting the current word based on surrounding words,
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Figure 7: The learned shortest-path sub-structures on ENZYMES dataset [4] in R2. Each node corresponds to a different shortest-path
sub-structure and colored by the value of their first dimension (labels on nodes are omitted for clarity). For instance, the shortest path sub-
structures embedded in the cluster marked with ∗ are 2 · 223, 2 · 224, 2 · 225, 2 · 226, 2 · 227, 2 · 228 where first two characters represent the
start and end point of the shortest-path and sub-script represents the length of the path). Note that the shortest-paths having the same start
and endpoints with similar shortest-path lengths are close to each other in the latent space.

the main objective of the Skip-gram is to predict the surrounding
words given the current word (see Figure 6). More precisely, the
objective of the Skip-gram model is to maximize the following log-
likelihood,

T∑
t=1

log Pr(wt−c, . . . , wt+c|wt). (11)

where the probability Pr(wt−c, . . . , wt+c|wt) is computed as

∏
−c≤j≤c,j 6=0

Pr(wt+j |wt). (12)

Here, the contextual words and the current word are assumed to be
independent. Furthermore, Pr(wt+j |wt) is defined as

exp(v>wt
v′wt+j

)∑V
w=1 exp(v>wt

v′w)
(13)

where vw and v′
w are the input and output vectors of word w.

Hierarchical softmax and negative sampling are two efficient al-
gorithms that are used in training the Skip-gram and CBOW mod-
els. Hierarchical softmax uses a binary Huffman tree to factorize
expensive partition function of the Skip-gram model. An alterna-
tive to the Hierarchical softmax is negative sampling, which selects
the contexts at random instead of considering all words in the vo-
cabulary. In other words, if a word w appears in the context of
another word w′, then the vector representation of the word w is
closer to the vector representation of word w′ comparing to any
other randomly chosen words. In practice, one should try both the
Skip-gram and CBOW models with Hierarchical softmax and neg-
ative sampling algorithms in order to decide which pair is more
suitable to the application in hand.

After the training converges, similar words are mapped to similar
positions in the vector space. Moreover, the learned word vectors
are empirically shown to preserve semantics. For instance, word
vectors can be used to answer analogy questions using simple vec-
tor algebra where the result of a vector calculation v(“Madrid”)−
v(“Spain”)+v(“France”) is closer to v(“Paris”) than any
other word vector [20].

These properties make word vectors attractive for our task since
the order independence assumption provides a flexible notion of
‘nearness’ for sub-structures. A key intuition we utilize in our
framework is to view sub-structures in graph kernels as words that

are generated from a special language. In other words, different
sub-structures compose graphs in a similar way that different words
form sentences when used together. With this analogy in mind,
one can utilize word embedding models to unveil dimensions of
similarity between sub-structures. The main expectation here is
that similar sub-structures will be close to each other in the d-
dimensional latent space. Figure 7 illustrates shortest-path sub-
structures in R2 learned by our framework. Note that similar sub-
structures are close together in latent space.

3.2.4 Deep Graph Kernels
Our framework takes a list of graphs G and decomposes each

graph into its sub-structures. The list of decomposed sub-structures
for each graph is then treated as a sentence that is generated from a
vocabulary V where vocabulary V simply corresponds to the unique
set of observed sub-structures in the training data. However, unlike
words in a traditional text corpora, sub-structures do not have a
linear co-occurrence relationship. Therefore, one needs to build a
corpus where the co-occurrence relationship is meaningful. Next,
we discuss how to generate corpora where co-occurrence relation-
ship is meaningful on three major graph kernel families.

• Corpus generation for graphlet kernels: Exhaustive enu-
meration of all graphlets in a graph G is prohibitively expen-
sive for even moderate sized graphs [23]. Several sampling
heuristics are proposed for sampling sub-graphs efficiently,
such as random sampling scheme of [28]. In practice, the
random sampling of graphlets of size k in a graph G involves
placing a randomly generated window of size k × k on the
adjacency matrix of G and collecting the observed graphlet
in that window. This procedure is repeated n times where
n being the number of graphlets we would like to sample.
However, since this is a random sampling scheme, it does
not preserve any notion of co-occurrence relationship which
is a desired property for our framework. Therefore, we mod-
ify the random sampling scheme to partially preserve the co-
occurrence between graphlets by using the notion of neigh-
borhoods. That is, whenever we randomly sample a graphlet
G, we also sample its immediate neighbors. The graphlet
and its neighbors are then interpreted as co-occurred by our
method. Therefore, graphlets which have similar neighbor-
hoods will acquire similar representations. While in this pa-
per we utilized only the immediate neighbors of a graphlet,
one can extend the co-occurrence relationship to consider
neighborhoods of distance ≥ 1.
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Figure 8: An example of sub-structure regularity in graphlet sub-
structure space.

In order to verify this intuition, we explored the idea of hav-
ing a similar effect of linguistic regularities in language mod-
els to graphs. Word embeddings are known to successfully
answer queries such as “What is the word that is similar to
small in the same sense as biggest is similar to big?" where
answer is correctly recovered as smallest [21]. Therefore,
we investigate whether a meaningful response with a similar
analogy can be recovered, such that “What is the graphlet
that is similar to a square (G27) in the same sense as trian-
gle with a tail (G26) is similar to triangle (G22)?". We used
the multiplicative combination objective proposed by [18]:

argmax
b∗∈V

cos(b∗, b) cos(b∗, a∗)

cos(b∗, a) + ε
(14)

where a and b are sub-structures from a vocabulary V , cos
is the cosine similarity between sub-structure vectors and
ε = 0.001 is used to prevent division by zero. This objective
function amplifies the differences between small quantities
and reduces the differences between larger ones. We used
two positive (G22, G27) and one negative example (G26),
and recovered G36 as the top sub-structure by this arithmetic
operation on embedded vectors (see Figure 8).

• Corpus generation for Shortest-Path graph kernels: Shortest-
path graph kernel compares the sorted endpoints and the length
of shortest-paths that are common between two graphs. Sim-
ilar to graphlet kernel, one needs to find a meaningful co-
occurrence relationship between shortest-path sub-structures.
One can show that all sub-paths of a shortest-path are also
shortest-paths with the same source [8]. In other words, when-
ever we observe a shortest-path sub-structure p of length l,
we must also observe all of its sub-paths of length < l as
well. Inspired by this property, whenever we generate a shortest-
path sub-structure, we also collect all possible shortest-path
sub-structures that share the same source node, and treat them
as co-occurred. Therefore, shortest-path sub-structures which
have similar labels will acquire similar representations (see
Figure 7).

• Corpus generation for Weisfeiler-Lehman kernels: The
Weisfeiler-Lehman subtree kernel iterates over each vertex
and its neighbors in order to create a multiset label. The
resultant multiset is given a new label, which is then used
for the next iteration. Therefore, multiset labels that belong
a given iteration h can be treated as co-occurred in order to
partially preserve a notion of similarity.

After generating a corpus where a co-occurrence relationship is
partially preserved, we simply build the model by using CBOW or
Skip-gram algorithms and train them with Hierarchical softmax or
negative sampling4. Let s represent an arbitrary sub-structure from
a vocabulary V , and Φs represent learned vector representation of
4We used Gensim library [25] for all algorithms.

s using our framework. Given the vector representations of sub-
structures, we compute a diagonalM matrix such that each entry
on the diagonal,Mii computed as 〈Φi,Φi〉 where Φi corresponds
to learned d-dimensional hidden of sub-sequence i andMij = 0
where i 6= j and 1 ≤ i ≤ |V| (resp. j). After computing theM
matrix, we simply plug it into Equation 2 in order to compute the
kernel between each sub-structure.

3.2.5 Other Deep Kernels
In a similar fashion, we can plug other graph kernels into our

framework such as random-walk kernels [10], labeled version of
graphlet kernel [28], subtree kernels [6, 24], cyclic pattern kernels
[13] and p-step random-walk kernel [30]. Moreover, our frame-
work is applicable to any R-convolution kernel where there is a
notion of dependency between sub-structures, such as string ker-
nels. String kernels are other popular instances of R-convolution
kernels where we are interested in computing a kernel between two
sequences. Given an input sequence S over an alphabet V and a
number k ≥ 1, k−spectrum of the sequence S is defined as the
set of all k-length contiguous sub-sequences S contains [17]. The
feature vector φ (S) is then simply constructed as a frequency vec-
tor over sub-sequences in its k-spectrum and the kernel between
two sequences are computed via Equation 1. Similar to graph ker-
nels, the co-occurrence relationship between sub-sequences are not
taken into account. Similar to graph kernels, we treat all length k
sub-sequences of a string as co-occurred and learn the hidden rep-
resentation of each spectrum using our framework. In case of string
kernels, we computeMmatrix such that each entryMij computed
as 〈Φi,Φj〉 where Φi corresponds to learned d-dimensional vector
of sub-sequence i (resp. Φj).

4. RELATED WORK
The closest work to our paper is the recently proposed model,

DeepWalk by [22]. DeepWalk learns social representations of ver-
tices of graphs by modeling short random-walks. We distance our-
selves from DeepWalk in several aspects. First, instead of learning
similarities between nodes we are interested in learning similarities
between structured objects, such as graphs and strings. In other
words, DeepWalk operates on a single graph, while we are inter-
ested in the relationship between multiple graphs. Moreover, in-
stead of using random-walks, our framework can be configured to
work with any type of sub-structures, including graphlets, shortest-
paths, sub-trees and strings.

Many different graph kernels focusing on different types of sub-
graphs have been defined in the past which can be categorized into
three major families: graph kernels based on limited-sized sub-
graphs [13], [28], graph kernels based on subtree patterns [24], [27]
and graph kernels based on walks [14] and paths [3]. Our frame-
work is complementary to existing graph and string kernels where
the sub-structures have a similarity relationship between them.

5. EXPERIMENTS
The aim of our experiments is threefold. First, we want to show

that using an M matrix that infers the relationship between sub-
structures improves the classification accuracy. Second, we want
to show that our framework is robust to random noise. Third, we
want to show that the deep kernels are comparable to or outper-
form state-of-the-art graph kernels in terms of classification accu-
racy, while remaining competitive in terms of computational re-
quirements. Next, we discuss bioinformatics and social network
datasets that we use in our experiments.
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Table 1: Properties of the Bioinformatics and Social network
datasets used in graph kernel experiments.

Dataset Size Classes Avg.nodes Labels
MUTAG 188 2 17.9 7
PTC 344 2 25.5 19
ENZYMES 600 6 32.6 3
PROTEINS 1113 2 39.1 3
NCI1 4110 2 29.8 37
NCI109 4127 2 29.6 38
COLLAB 5000 3 74.49 -
IMDB-BINARY 1000 2 19.77 -
IMDB-MULTI 1500 3 13 -
REDDIT-BINARY 2000 2 429.61 -
REDDIT-MULTI-5K 5000 2 508.5 -
REDDIT-MULTI-12K 11929 11 391.4 -

5.1 Datasets
In order to test the efficacy of our model, we applied our frame-

work to real-world datasets from bioinformatics and social net-
works (see Table 1 for summary statistics of these datasets).

5.1.1 Bioinformatics datasets
We applied our framework to benchmark graph kernel datasets,

namely, MUTAG, PTC, ENZYMES, PROTEINS and NCI1, NCI109.
MUTAG is a dataset of 188 mutagenic aromatic and heteroaromatic
nitro compounds [7] with 7 discrete labels. PTC [31] is a dataset of
344 chemical compounds that reports the carcinogenicity for male
and female rats and it has 19 discrete labels. NCI1 and NCI109
[34] datasets (4100 and 4127 nodes, respectively), made publicly
available by the National Cancer Institute (NCI) are two subsets of
balanced datasets of chemical compounds screened for ability to
suppress or inhibit the growth of a panel of human tumor cell lines,
having 37 and 38 discrete labels respectively. ENZYMES is a bal-
anced dataset of 600 protein tertiary structures obtained from [4]
and has 3 discrete labels. PROTEINS is a dataset obtained from [4]
where nodes are secondary structure elements (SSEs) and there is
an edge between two nodes if they are neighbors in the amino-acid
sequence or in 3D space. It has 3 discrete labels, representing helix,
sheet or turn.

5.1.2 Social network datasets
In order to test the efficacy of our framework on social network

domain, we derive several unlabeled graph datasets with different
tasks as follows.

• Reddit datasets: REDDIT-BINARY is a balanced dataset
where each graph corresponds to an online discussion thread
where nodes correspond to users, and there is an edge be-
tween two nodes if at least one of them responded to an-
other’s comment. We crawled top submissions from four
popular subreddits, namely, IAmA, AskReddit, TrollXChro-
mosomes, atheism. IAmA and AskReddit are two question/answer-
based subreddits and TrollXChromosomes and atheism are
two discussion-based subreddits. The task is then to identify
whether a given graph belongs to a question/answer-based
community or a discussion-based community. REDDIT-MULTI-
5K is a balanced dataset from five different subreddits, namely,
worldnews, videos, AdviceAnimals, aww and mildlyinterest-
ing where we simply label each graph with their correspon-
dent subreddit. REDDIT-MULTI-12K is a larger variant of
REDDIT-MULTI-5K, consists of 11 different subreddits, namely,

AskReddit, AdviceAnimals, atheism, aww, IAmA, mildlyinter-
esting, Showerthoughts, videos, todayilearned, worldnews,
TrollXChromosomes. The task in both datasets is to predict
which subreddit a given discussion graph belongs to.

• Scientific collaboration dataset: COLLAB is a scientific-
collaboration dataset, derived from 3 public collaboration
datasets [16], namely, High Energy Physics, Condensed Mat-
ter Physics and Astro Physics. Following the approach of
[29], we generated ego-networks of different researchers from
each field, and labeled each graph as the field of the re-
searcher. The task is then to determine whether the ego-
collaboration graph of a researcher belongs to High Energy,
Condensed Matter or Astro Physics field.

• Movie collaboration datasets: IMDB-BINARY is a movie-
collaboration dataset where we collected actor/actress and
genre information of different movies on IMDB. For each
graph, nodes represent actors/actresses and there is an edge
between them if they appear in the same movie. We gen-
erated collaboration graphs on Action and Romance genres
and derived ego-networks for each actor/actress. Note that
a movie can belong to both genres at the same time, there-
fore we discarded movies from Romance genre if the movie
is already included to the Action genre. Similar to COLLAB
dataset, we simply labeled each ego-network with the genre
graph it belongs to. The task is then simply to identify which
genre an ego-network graph belongs to. IMDB-MULTI is
multi-class version of IMDB-BINARY and contains a bal-
anced set of ego-networks derived from Comedy, Romance
and Sci-Fi genres.

5.2 Experimental setup
We compare our framework against representative instances of

major families of graph kernels in the literature. Other than base
kernels of our framework, namely, Weisfeiler-Lehman subtree ker-
nel [28], graphlet kernel [28], and shortest-path kernel [3], we also
compare our kernels with the random walk kernel [10], the subtree
kernel [24], and p-step random-walk kernel [30]. The Random-
Walk, p-step Random-Walk and Ramon-Gärtner kernels are writ-
ten in Matlab and were obtained from the authors of [28]. All other
kernels were coded in Python5. In order to ensure a fair compari-
son, all experiments are performed on the same hardware.

All kernels are normalized to have a unit length in the feature
space. Moreover, we use 10-fold cross validation with a binary
C-SVM [5] to test classification performance. The C value for
each fold is independently tuned using training data from that fold.
In order to exclude random effects of the fold assignments, this
experiment is repeated 10 times, and average prediction accuracies
with their standard deviations are reported.

5.3 Parameter selection
We chose parameters for the various kernels as follows: the win-

dow size and dimension for deep graph kernels is chosen from
{2, 5, 10, 25, 50}, the decay factor for random-walk kernels is cho-
sen from

{
10−6, 10−5, . . . , 10−1

}
, the p value in the p-step random-

walk kernel is chosen from {1, 2, . . . , 10} and the height parame-
ter in Ramon-Gärtner subtree kernel is chosen from {1, 2, 3}. For
each kernel, we report the results for the parameter which gave the
best classification accuracy. For Weisfeiler-Lehman subtree kernel,
we experimented with the height parameter h = 2 due to expo-
nentially increasing feature space of the original kernel. For the
5Our code and datasets are available at http://web.ics.
purdue.edu/~ypinar/kdd
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(a) Edit-distance graphlet kernels (b) Deep graphlet kernels

Figure 9: Classification accuracy (y-axis) vs. edge noise (x-axis) on different datasets using Graphlet kernel vs. Edit-distance graphlet kernel
(a) and Graphlet kernel vs. Deep graphlet kernel (b). Dashed lines represent original graphlet kernel while non-dashed lines represents its
corresponding variant derived from our framework.

graphlet kernel, we set the size of the graphlets k to be 7 since it
exhibits the sparsity problem that we are interested in. We used
Nauty [19] to get canonically-labeled isomorphic representations
of each graphlet which are then used to construct the feature repre-
sentation.

5.4 Results
In this section, we apply our framework to several benchmark

datasets and compare the classification accuracy of our kernels against
their base variants.

Graphlet Kernels under noise We have two variants of graphlet
kernels, namely, Edit-distance Graphlet Kernel (EGK) introduced
in Section 3.1 and Deep Graphlet Kernel (DGK) introduced in Sec-
tion 3.2. Since graphlet kernels do not exploit label information
on the vertices and only compare graphs based on their structural
similarity, an interesting experiment is to see how our kernels be-
have under random noise on the edges. Therefore, we derive noisy
variants of the datasets by randomly flipping 10%, 20% and 30%
of the edges. Figure 9 (a) shows the comparison between original
graphlet kernel and EGK where 0% represents the classification ac-
curacy on the original dataset without noise. As can be seen from
the figure, EGK outperforms the base kernel in MUTAG, PTC,
PROTEINS, NCI1, NCI109, but outperformed by the original ker-
nel in ENZYMES dataset. We believe this is due to the fact that
EGK only uses a mathematical relationship between sub-structures
rather than learning a sophisticated relationship. Therefore, we ap-
plied our deep kernel framework on graphlet kernels (see Figure
9) (b). As can be seen from the figure, learning latent representa-
tions of the graphlets outperforms its base variant significantly in
all datasets except PROTEINS.

Graphlet Kernels on social network datasets Next, we test the
efficacy of our framework on several social network datasets us-
ing graphlet kernels. As can be seen from Table 2, deep graphlet
kernels are able to outperform its base variant in all cases.

Deep Graph Kernels on bioinformatics datasets Table 3 shows
the classification accuracy between graph kernels and their deep
variants using Graphlet kernel, Weisfeiler-Lehman kernel, and Shortest-
Path kernel. As can be seen from the table, our method is compa-
rable or outperforms the base variants in all datasets.

Table 2: Comparison of classification accuracy (± standard de-
viation) of the Graphlet Kernel (GK) and Deep Graphlet Kernel
(DGK) on social network datasets.

Dataset GK DGK
COLLAB 72.84 ± 0.28 73.09 ± 0.25
IMDB-BINARY 65.87 ± 0.98 66.96 ± 0.56
IMDB-MULTI 43.89 ± 0.38 44.55 ± 0.52
REDDIT-BINARY 77.34 ± 0.18 78.04 ± 0.39
REDDIT-MULTI-5K 41.01 ± 0.17 41.27 ± 0.18
REDDIT-MULTI-12K 31.82 ± 0.08 32.22 ± 0.10

Comparison against other kernels Table 4 shows the classifi-
cation accuracy of Ramon & Gärtner, p-random-walk and random-
walk graph kernels where the first column is constructed by picking
the best result of Deep Graph Kernels from Table 3. As can be seen
from Table 4, Deep Graph Kernels are able to outperform other
graph kernels.

5.5 Computational Cost
For Edit-distance Graphlet Kernel, computing anM matrix in-

volves a one-time computation of the undirected graph between
1253 nodes for k = 7 which empirically takes 7 minutes. Af-
ter that, one needs to compute all-pairs-shortest-path distances on
the obtained undirected graph which empirically takes 8 seconds.
For deep graph kernels, the overhead of computing an M ma-
trix involves learning latent representations of the observed sub-
structures. The runtime averaged out of all datasets for learning
the latent representations is 21.5 seconds for deep graphlet kernel,
4.5 seconds for deep shortest-path graph kernel and 1.75 seconds
for deep Weisfeiler-Lehman graph kernel. All runtime experiments
use a fixed window size and dimension at 25 and this process is
repeated 10 times to eliminate random effects.

5.6 Deep String Kernels
As a proof-of-concept, we derive a deep variant of k-spectrum

string kernel and perform experiments on benchmark bioinformat-
ics datasets.
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Table 3: Comparison of classification accuracy (± standard deviation) of the graphlet kernel (GK), shortest-path kernel (SP), Weisfeiler-
Lehman kernel (WL) to their deep variants on bioinformatics datasets.

Dataset GK Deep GK SP Deep SP WL Deep WL
MUTAG 81.66 ± 2.11 82.66 ± 1.45 85.22 ± 2.43 87.44 ± 2.72 80.72 ± 3.00 82.94 ± 2.68

PTC 57.26 ± 1.41 57.32 ± 1.13 58.24 ± 2.44 60.08 ± 2.55 56.97 ± 2.01 59.17 ± 1.56
ENZYMES 26.61 ± 0.99 27.08 ± 0.79 40.10 ± 1.50 41.65 ± 1.57 53.15 ± 1.14 53.43 ± 0.91
PROTEINS 71.67 ± 0.55 71.68 ± 0.50 75.07 ± 0.54 75.68 ± 0.54 72.92 ± 0.56 73.30 ± 0.82

NCI1 62.28 ± 0.29 62.48 ± 0.25 73.00 ± 0.24 73.55 ± 0.51 80.13 ± 0.50 80.31 ± 0.46
NCI109 62.60 ± 0.19 62.69 ± 0.23 73.00 ± 0.21 73.26 ± 0.26 80.22 ± 0.34 80.32 ± 0.33

Table 4: Comparison of classification accuracy (± standard deviation) of Ramon & Gärtner, p-random-walk and random-walk graph kernels.
> 72H indicates that the computation did not finish after 72 hours.

Dataset Deep Graph Kernels Ramon&Gärtner p-random-walk Random-walk
MUTAG 87.44 ± 2.72 84.88 ± 1.86 80.05 ± 1.64 83.72 ± 1.50

PTC 60.08 ± 2.55 58.47 ± 0.90 59.38 ± 1.66 57.85 ± 1.30
ENZYMES 53.43 ± 0.91 16.96 ± 1.46 30.01 ± 1.01 24.16 ± 1.64
PROTEINS 75.68 ± 0.54 70.73 ± 0.35 71.16 ± 0.35 74.22± 0.42

NCI1 80.31 ± 0.46 56.61 ± 0.53 > 72h > 72h
NCI109 80.32 ± 0.33 54.62 ± 0.23 > 72h > 72h

5.6.1 Datasets
In order to test the efficacy of our model, we applied our method

to benchmark datasets in string kernels. SCOP (Structural Clas-
sification of Proteins) is a manually-curated database that groups
proteins together based on their 3-D structures [1]. The task is then
to classify protein sequences into 7 distinct super-families. SCOP
database has a 4-level structure-based hierarchy of classes where
protein sequences are classified into one of the classes, namely,
class, fold, super-family and family. Similar to the setting in [32],
we tackled family and super-family classification problems where
a family contains proteins with clear evolutionary relationship, and
super-family contains the same evolutionary origin without being
detectable at the level of sequences [15]. In family-classification
problem, we considered NAD(P)-binding Rossmann-fold and (trans)-
glycosidases domains where our main task is to classify proteins
in a super-family into their families. NAD(P)-Rossmann dataset
has 246 sequences having an average length of 218 with 6 classes
where (trans)-glycosidases has 95 sequences having an average length
of 375 with 2 classes.

In super-family classification problem, we used Triose Phosphate
Isomerase (TIM) beta/alpha-barrel protein fold where we classify
each protein to one of the 7 distinct super-families. TIM beta/alpha
dataset has 330 sequences having an average length of 332 with
7 classes. In order to derive the labels of each sequence, we used
Astral SCOPe 2.04 genetic domain sequence database [9], based on
PDB SEQRES records, with less than 95% identity to each other.

Moreover, we derived a new dataset for string kernels using the
transcripts of TED.com talks. We collected the transcript of 385
talks having an average length of 9425 from three categories, namely,
Technology, Entertainment, Design. The task is then to predict
which of the three category a talk belongs to.

5.6.2 Results
The comparison between original k-spectrum string kernel with

k = 3 and our method can be seen from Table 5. As shown in Table
5, deep variant of k-spectrum string kernel is able to outperform the
base k-spectrum string kernel in all datasets.

Table 5: Classification accuracy and error reduction for string ker-
nel experiments where numbers next to the accuracy results repre-
sents the standard deviation.

Dataset K-Spectrum Deep Spectrum
TIM beta/alpha 67.60 ± 1.13 69.03 ± 1.03

(trans)glycosidases 93.88 ± 2.17 95.33 ± 1.02
NAD(P)-Rossmann 69.87 ± 0.78 75.54 ± 0.85

TED 74.31 ± 0.88 77.39 ± 0.97

6. CONCLUSION
We presented a novel framework for graph kernels inspired by

latest advancements in natural language processing and deep learn-
ing. We applied our framework to three popular graph kernels,
namely, graphlet kernel, shortest-path kernel, and Weisfeiler-Lehman
subtree kernels. We introduced several large graph kernel datasets
in social network domain, and showed that our framework outper-
forms its base variants in terms of classification accuracy while in-
troducing a negligible overhead.

Moreover, while we mainly restricted ourselves to graph kernels
in this paper, we discussed that our framework is rather general,
and lends itself to many extensions. For instance, it can be plugged
directly into any R-convolution kernel as long as there is a depen-
dency between sub-structures. We demonstrated one such exten-
sion on string kernels and achieved significant improvements in
classification accuracy.

An interesting extension of our framework would be applying
it to attributed graphs with continuous values. Since a certain di-
vergence between attribute values needs to be tolerated, learning
hidden representations of the sub-structures would help to obtain a
better classification accuracy.
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