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Publishing

• Conference Paper, Research

• KDD ’16 Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining

• A premier interdisciplinary conference, brings together researchers
and practitioners from data science, data mining, knowledge
discovery, large-scale data analytics, and big data.

• Sigkdd has the highest h5 index of any conference involving
databases or data in general

• Highly trusted source
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Problem de�nition

• People often use Machine Learning models for predictions

• Blindly trusting a prediction can lead to poor decision making

• We seek to understand the reasons behind predictions
• As well as the model doing the predictions
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Previous Solutions

• Relying on accuracy based on validation set

• Gestalt

• Modeltracker
• Help users navigate individual instances.
• Complementary to LIME in terms of explaining models, since they do
not address the problem of explaining individual predictions.

• The our submodular pick procedure of LIME can be incorporated in
such tools to aid users in navigating larger datasets.

• Recognizing the utility of explanations in assessing trust, many have
proposed using interpretable models

• May generalize poorly, if data can’t be explained in few dimensions
• So interpretability, in these cases, comes at the cost of �exibility,
accuracy, or e�ciency
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A look into two predictions
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A look into two predictions
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LIME

• The algorithm created

• Explains the predictions of any classi�er or regressor in a faithful
way, by approximating it locally with an interpretable model.
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Properties of a good explanation

• It should be intepretable:
• They must provide qualitative understanding between the input
variables and the response

• They must take into account the users limitations
• Use a representation understandable to humans
• Could be a binary vector indicating presence or absence of a word
• Could be a binary vector indicating presence of absence of
super-pixels in an image

• It should have �delity:
• Essentially means the model should be faithful.
• Local �delity does not imply global �delity
• The explanation should aim to correspond to how the model
behaves in the vicinity of the instance being predicted

• It should be model-agnostic:
• The explanation should be blind to what model is underneath
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The Fidelity-Interpretability Trade-o�

We want a simple explanation, still capable of displaying �delity

• Let an explanation be de�ned as a model g ∈ {0, 1}d′ ∈ G, where G is a class of
potentially interpretable models

• Linear models, decision trees
• g is a vector showing presence or absence of interpretable components

• Ω(g) explains the complexity of an explanation g
• Could be height of a decision tree or number of non-zero weights of a linear model

• The model we try to explain is f : Rd → R
• In classi�cation, f(x) is the probability or binary indicator that x belongs to a certain class

• πx(z) is a proximity measure between instance z and x and de�nes the locality around
x

• L(f , g, πx) de�nes how unfaithful g is in approximating f in the locality around πx.
• Ensuring both interpretability and local �delity, we minimize L while having Ω(g) be
low as well

ξ(x) = argmin
g∈G

L(f , g, πx) + Ω(g)
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Sampling for Local Exploration

Goal: Minimizing L(f , g, πx) without making assumptions on f

• For a sample x, we need to draw samples around x
• Accomplished by drawing non-zero elements of x, resulting in
perturbed samples z′

• Given z′ ∈ {0, 1}d′ , we compute un-pertubed z ∈ Rd, f(z), so we
have a label for z′.
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More de�nitions

• G = Class of linear models: g(z′) = wg · z′

• L = The locally weighted square loss

• πx(z) = exp(−D(x, z)2/σ2)
• An exponential kernel function based on some distance function D
(could be L2 distance for images)

• Thus; L(f , g, πx) =
∑

z,z′∈Z
πx(z)(f(z)− g(z′))2
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Explaining an individual prediction

Algorithm 1: Sparse Linear Explanations using LIME
Require: Classi�er f , Number of samples N
Require: Instance x, and its intepretable version x′
Require: Similarity kernel πx, Length of explanation K

1 Z ← {}
2 for i ∈ {1, 2, 3, . . . ,N} do
3 z′i ← sample_around(x′)
4 Z ← Z ∪ 〈z′i , f(zi), πx(zi)〉
5 end
6 w← K-Lasso(Z, K) B with z′i as features, f(z) as target
7 return w
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Explaining models

Idea: We give a global understanding of the model by explaining a set of
individual instances

• Still model agnositc (since the indiviudal explanations are)

• Instances need to be selected in a clever way, as people won’t have
time to look through all explanations

• Some de�nitions
• Time/patience of humans is explained by a budget B which denotes
number of explanations a human will sit through.

• Given a set of instances X, we de�ne the pick step as the task of
selecting B instances for the user to inspect.
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The pick step

The task of selecting B instances for the user to inspect

• Not dependent on the existence of explanations

• So it should not assist users in selecting instances themselves

• Looking at raw data is not enough to understand predicitions and
get insights

• Should take into account the explanations that accompany each
prediction

• Should pick a diverse, representative set of explanations to show
the user, so non-redundant explanations that represent how the
model behaves globally.
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Picking instances
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Picking instances
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De�nitions

• Ij =
√∑n

i=1 Wij

• c(V,W, I) =
d′∑
j=1

1[∃i∈V:Wij>0] Ij

• Pick(W, I) = argmax
V,|V|≤B

c(V,W, I)
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Explanation of algorithm 2

• Given explanations for set of instances X, (|X| = n). Construct
n× d′ explanation matrix W
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Submodular Picks

Algorithm 2: Submodular pick (SP) algorithm
Require: Instances X, Budget B

1 forall xi ∈ X do
2 Wi ← explain(xi, x′i) B Using Algorithm 1
3 end
4 for j ∈ {1 . . . d′ do
5 Ij ←

√∑n
i=1 |Wij| B Compute feature importances

6 end
7 V ← {}
8 while |V| < B do B Greedy optimisation of Eq 4
9 V ← V ∪ argmaxi c(V ∪ {i},W, i)
10 end
11 return V
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Experiments



Experiments

Interested in three questions:

• Are the explanations faithful to the model?

• Can the explanations aid users in ascertaining trust in the
predictions

• Are the explanations useful for evaluating the model as a whole
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Setup

• Use two datasets, books and DVDs, both of 2000 instances.
• Task is to classify reviews as positive or negative

• Decision Trees (DT), Logistic Regression (LR), Nearest Neighbours
(NN), and SVMs with RBF kernel (SVM), all used BoW as features, are
trained.

• Also train random forest (RF) with 1000 trees.

• Each dataset used for training will consist of 1600 instances and
400 will be used for testing.

• Explanations of LIME is compared with parzen
• parzen approximates black box classi�er globally and explains
individual predictions by taking the gradient of the prediction
probability function.

• Both are also compared to a greedy method where features are
picked by removing most contributing ones until prediction change,
as well as a random procedure.

• K = 10 for the experiments 27



Faithfulness

• Faithfulness of explanations is measured on classi�ers that are
interpretable, LR and DT.

• Both are trained s.t. the max no. of features which they can �nd is
10, so features found by these are the gold standard of features, in
regards to which features are important.

• For each prediction on the test set, explanations are produced and
the fraction of the gold features found, is computed.
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Faithfulness
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Should I trust this prediction?
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Can I trust this model?

• Evaluate if explanations can be used for model selection

• They add 10 arti�cially âĂĲnoisyâĂİ features s.t.
• Each arti�cial feature appears in 10% of the examples in one class,
and 20% of the other in the training/validation data.

• While on the test instances, each arti�cial feature appears in 10% of
the examples in each class.

• Results in models both using actual informative features, but also
ones creating random correlations.

• Pairs of competing classi�ers are computed by repeatedly training
pairs of random forests with 30 trees until their validation accuracy
is within 0.1% of each other, but their test accuracy di�ers by at
least 5%.
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Can I trust this model?
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Can humans pick the best classi�er?
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Can non-experts improve a classi�er?
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Can we learn something from the explanations?
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Can we learn something from the explanations?

• Present 10 predictions without explanations
• 2 are miss-predictions with a husky in snow and a wolf without
snow, the rest are correct

• Ask three questions:
1. Do you trust this algorithm to generalize?
2. Why?
3. How do you think the algorithm distinguishes?

• Results shown in table, before and after having seen the
explanations.
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Conclusion

• They argue that trust is crucial for e�ective human interaction with
machine learning systems

• Explaining individual predictions is important in assessing trust

• They proposed LIME, a modular and extensible ap- proach to
faithfully explain the predictions of any model in an interpretable
manner

• They introduced SP-LIME, a method to select representative and
non-redundant predictions, providing a global view of the model to
users.

• Experiments demonstrated that explanations are useful for a variety
of models in trust-related tasks in the text and image domains
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Future work

• They use only sparse linear models as explanations, our framework
supports the exploration of a variety of explanation families, such
as DTs.

• This estimate of faithfulness can also be used for selecting an
appropriate family of explanations from a set of multiple
interpretable model classes, thus adapting to the given dataset and
the classi�er.

• One issue that they do not mention in this work was how to perform
the pick step for images.

• They would like to investigate potential uses in speech, video, and
medical domains, as well as recommendation systems.

• They would like to explore theoretical properties (such as the
appropriate number of samples) and computational optimizations
(such as using parallelization and GPU processing)
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