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• This paper won the Audience appreciation award
• These also wrote “Model-Agnostic Interpretability of Machine Learning”
• Marco’s research focus for his PhD was making it easier for humans to
understand and interact with machine learning models.



Publishing

• Conference Paper, Research
• KDD ’16 Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining

• A premier interdisciplinary conference, brings together researchers
and practitioners from data science, data mining, knowledge
discovery, large-scale data analytics, and big data.

• Sigkdd has the highest h5 index of any conference involving
databases or data in general

• Highly trusted source
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• Main take-away is that this paper was shown at a respected conference
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Problem de�nition

• People often use Machine Learning models for predictions

• Blindly trusting a prediction can lead to poor decision making
• We seek to understand the reasons behind predictions

• As well as the model doing the predictions
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Previous Solutions

• Relying on accuracy based on validation set
• Recognizing the utility of explanations in assessing trust, many
have proposed using interpretable models

• May generalize poorly, if data can’t be explained in few dimensions
• So interpretability, in these cases, comes at the cost of �exibility,
accuracy, or e�ciency
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Practitioners consistently overestimate their models accuracy [20], propagate

feedback loops [23], or fail to notice data leaks



A look into two predictions
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It becomes clear the dataset has issues, as there is a fake correlation between the

header information and the class Atheism. It is also clear what the problems are,

and the steps that can be taken to �x these issues and train a more trustworthy

classi�er.
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LIME

• The algorithm created

• Explains the predictions of any classi�er or regressor in a faithful
way, by approximating it locally with an interpretable model.

11

Everything you want



Properties of a good explanation

• It should be intepretable
• They must provide qualitative understanding between the input
variables and the response

• They must take into account the users limitations

• It should have �delity
• Essentially means the model should be faithful.

• It should be model-agnostic
• Should treat model as a black box
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Interpretable
Use a representation understandable to humans
Could be a binary vector indicating presence or absence of a word
Could be a binary vector indicating presence of absence of super-pixels in an
image
Fidelity
Essentially means the model should be faithful.
Local �delity does not imply global �delity
The explanation should aim to correspond to how themodel behaves in the vicin-
ity of the instance being predicted
Model-agnostic
The explanation should be blind to what model is underneath



The Fidelity-Interpretability Trade-o�

We want a simple explanation, still capable of displaying �delity

• Let an explanation be de�ned as a model g ∈ {0, 1}d′ ∈ G, where G is a
class of potentially interpretable models

• Ω(g) explains the complexity of an explanation g
• The model we try to explain is f : Rd → R
• πx(z) is a proximity measure between instance z and x and de�nes the
locality around x

• L(f , g, πx) de�nes how unfaithful g is in approximating f in the locality
around πx.

• To ensure both interpretability and local �delity, we minimize L while
having Ω(g) be low as well

ξ(x) = argmin
g∈G

L(f , g, πx) + Ω(g)
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Intepretable models could be:
Linear models, decision trees
g is a vector showing presence or absence of interpretable components
Ω(g) could be height of a DT or number of non-zero weights of linear model
In classi�cation, f(x) is the probability or binary indicator that x belongs to a
certain class
So a more complex g will achieve a more faithful interpretation (a lower L), but
will increase the value of Omega(g)



Sampling for Local Exploration

Goal: Minimizing L(f , g, πx) without making assumptions on f

• For a sample x′, we need to draw samples around x′

• Accomplished by drawing non-zero elements of x, resulting in
perturbed samples z′

• Given z′ ∈ {0, 1}d′ , we compute un-pertubed z ∈ Rd, f(z), so we
have a label for z′.
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WTF is x’ here? - An interpretable version of x
g acts in d’ while f acts in d, so when we say that we have z’ in dimension d’, it’s
the model g, we can recover the z in the original representation i.e. explained by
f in dimension d.



Speci�cs for linear models

• They focus only on linear explanations

• G = Class of linear models: g(z′) = wg · z′

• L = The locally weighted square loss
• πx(z) = exp(−D(x, z)2/σ2)

• An exponential kernel function based on some distance function D
(could be L2 distance for images)

• Thus; L(f , g, πx) =
∑

z,z′∈Z
πx(z)(f(z)− g(z′))2
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Explaining an individual prediction

• Solving eq argming∈G L(f , g, πx) + Ω(g) is intractable, but this
algo approximates it.

• K-Lasso is the procedure of picking K features with Lasso and then
using Least Squares to compute weights (features).

Algorithm 1: Sparse Linear Explanations using LIME
Require: Classi�er f , Number of samples N
Require: Instance x, and its intepretable version x′
Require: Similarity kernel πx, Length of explanation K

1 Z ← {}
2 for i ∈ {1, 2, 3, . . . ,N} do
3 z′i ← sample_around(x′)
4 add 〈z′i , f(zi), πx(zi)〉 to Z
5 end
6 w← K-Lasso(Z, K) //with z′i as features, f(z) as target
7 return w
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Talk through the algorithm, discussing the sampling and K-Lasso (least absolute
shrinkage and selection operator), which is used for feature selection
This algorithm approximates the minimization problem of computing a single
individual explanation of a prediction.

K-Lasso is the procedure of learning the weights via least squares. Wtf are these

weights??? - The features



Explaining models

Idea: We give a global understanding of the model by explaining a set of
individual instances

• Still model agnositc (since the individual explanations are)

• Instances need to be selected in a clever way, as people won’t have
time to look through all explanations

• Some de�nitions
• Time/patience of humans is explained by a budget B which denotes
number of explanations a human will sit through.

• Given a set of instances X, we de�ne the pick step as the task of
selecting B instances for the user to inspect.
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The pick step

The task of selecting B instances for the user to inspect

• Should return the instances which best explains the model

• Looking at raw data is not enough to understand predicitions and
get insights

• Should take into account the explanations that accompany each
prediction
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Should pick a diverse, representative set of explanations to show the user, so

non-redundant explanations that represent how the model behaves globally.



Picking instances

19

This is a matrix explaining instances and their features explained by a binary list
s.t. an instance either has a feature or does not.
The blue line explains themost inherent feature, which is important, as it is found
in most of the instances.
The red lines indicate the two samples which are most important in explaining
the model.

Thus, explaining importance, is done by: Ij =
√∑n

i=1 Wij
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Submodular Picks

c(V,W, I) =
d′∑
j=1

1[∃i∈V:Wij>0] Ij

Algorithm 2: Submodular pick (SP) algorithm
Require: Instances X, Budget B

1 forall xi ∈ X do
2 Wi ← explain(xi, x′i) // Using Algorithm 1
3 end
4 for j ∈ {1 . . . d′ do
5 Ij ←

√∑n
i=1 |Wij| // Compute feature

importances
6 end
7 V ← {}
8 while |V| < B do // Greedy optimisation of Eq 4
9 V ← V ∪ argmaxi c(V ∪ {i},W, i)
10 end
11 return V
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Note: maximizing a weighted coverage function is NP-hard, but the version used

in the algorithm is iterativily greedy, so it just adds the one with the maximum

gain, which o�ers a constant-factor approximation guarantee of 11/e to the op-

timum.
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Experiments

Interested in three questions:

• Are the explanations faithful to the model?

• Can the explanations aid users in ascertaining trust in the
individual predictions?

• Are the explanations useful for evaluating the model as a whole?
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Faithfulness and golden standard

• Explanations of LIME are compared with parzen as well as greedy
and random algorithms.

• parzen approximates black box classi�er globally and explains
individual predictions by taking the gradient of the prediction
probability function.

• Faithfulness of explanations is measured on classi�ers that are
interpretable: Logistic Regression and Decision Tree.

• Both �nd 10 features, which are the gold standard features

• For each prediction on the test set, explanations are produced and
the fraction of the gold features found, is computed.
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• Train logistic regression and decision tree classi�ers, so that they use a
maximum of 10 features to classify each instance.

• These 10 features are the gold set of features that are actually considered
important by the model.

• The explanations should recover these features.



Faithfulness
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• We observe that the greedy approach is comparable to parzen on logistic
regression, but is signi�cantly worse on decision trees, since changing a
single feature at a time often does not have an e�ect on the prediction.

• The overall recall by parzen is low, likely due to the di�culty in
approximating the original highdimensional classi�er.

• LIME consistently provides > 90% recall for both classi�ers on both
datasets, demonstrating that LIME explanations are faithful to the models.



Should I trust this prediction?

• Randomly select 25% of the features as untrustworthy.
• Simulated users deem a prediction untrustworthy if:

• Lime & Parzen: the linear approximation changes, when all
untrustworthy features are removed from the explanation.

• Greedy & Random: they contain any untrustworthy features.
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• 2nd experiment: test trust in individual predicitions.
• Test-set predictions are deemed (oracle,truely) untrustworthy if the
prediction from the black-box classi�er changes when these features are
removed.

• Simulated user knows which features to discount.
• If the line is di�erent when untrustworthy features are removed,
something is wrong!

• F-measure = a measure of a test’s accuracy, i.e. if the user correctly
distrusts a prediction based on the explanation given by fx LIME.

• The table show that the other methods achieve lower recall = mistrust too
many predictions, or lower precision = trust too many predictions.



Can I trust this model?

• Evaluate if explanations can be used for model selection
• They add 10 arti�cially “noisy” features s.t.

• Each arti�cial feature appears in 10% of the examples in one class,
and 20% of the other in the training/validation data.

• While on the test instances, each arti�cial feature appears in 10% of
the examples in each class.

• Results in models both using actual informative features, but also
ones creating random correlations.

• Pairs of competing classi�ers are computed by repeatedly training
pairs of random forests with 30 trees until their validation accuracy
is within 0.1% of each other, but their test accuracy di�ers by at
least 5%.
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• 3rd experiment: two models, user should select the best based on
validation accuracy.

•



Can I trust this model?
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• They evaluate whether the explanations can be used for model selection,
simulating the case where a human has to decide between two competing
models with similar accuracy on validation data.

• Accomplished by "marking" the arti�cial features found within the B
instances seen, as unstrustworthy. We then evaluate how many total
predictions in the validation set should be trusted (as in the previous
section, treating only marked features as untrustworthy).

• As B, the number of explanations seen, increases, the simulated human is
better at selecting the best model.



Can humans pick the best classi�er?
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• Non-expert humans, without any knowledge of machine learning
• Train two classi�ers, one on standard data set and one on a cleaned
version of the same data set

• Use the newsgroup dataset for training, which is the one with the
atheism/christianity emails

• Run the classi�ers on a “religion” dataset, that the authors create
themselves, to question if the classi�ers generalizes well

• Standard one achieves higher validation accuracy - but it’s not correct!
• Humans are asked to pick the best classi�er when seeing explanations
from the two classi�ers for B and K = 6 (They see 6 explanations with 6
features)

• Repeated 100 times
• Clearly SP LIME outperforms other options



Can non-experts improve a classi�er?

• 200 words were removed with SP, 157 with RP
• Out of the 200 words removed, 174 were selected by at least half
the users, 68 by all 31

• Non-expert humans, without any knowledge of machine learning
• Use newsgroup dataset
• Ask mechanical turk users to select features to be removed (email
headers), before the classi�er is retrained

• B = K = 10
• Accuracy shown in graph, is on the homebrewed religion dataset
• Without cleaning, the classi�ers achieve roughly 58%, so it helps a lot!
• It only took on average 11 minutes to remove all the words over all 3
iterations, so little time investment, but much better accuracy

• SP-LIME outperforms RP-LIME, suggesting that selection of the instances
to show the users is crucial for e�cient feature engineering.



Can we learn something from the explanations?

• Images picked to create fake correlation between wolf and snow

• Use Logistic Regression classi�er

• Features come from Google’s pre-trained Inception NN
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• Use graduate students who has taken at least one course in machine
learning.

• Intentionally train bad classi�er by having snow on all wolf-images during
training.



Can we learn something from the explanations?

• Present 10 predictions without explanations
• 2 are miss-predictions with a husky in snow and a wolf without
snow, the rest are correct

• Ask three questions:
1. Do you trust this algorithm to generalize?
2. Why?
3. How do you think the algorithm distinguishes?

• Results shown in table, before and after having seen the
explanations.
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• Clearly shows that seeing the explanations leads to insight, changing their
answers consistently.
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Conclusion

• They argue that trust is crucial for e�ective human interaction with
machine learning systems

• Explaining individual predictions is important in assessing trust

• They proposed LIME, a modular and extensible approach to
faithfully explain the predictions of any model in an interpretable
manner

• They introduced SP-LIME, a method to select representative and
non-redundant predictions, providing a global view of the model to
users.

• Experiments demonstrated that explanations are useful for a
variety of models in trust-related tasks in the text and image
domains

34

• Establishing trust in machine learning models, requires that the system
can explain its behaviour.

– Both Individual predictions.
– As well as the entire model.

• To this end, they introduce (submodular-pick) SP-LIME, which select a
small number of explanations, which together (hopefully) explain the
entire model.

• Experiments show that this is indeed the case.



Future work

• Explanation families beyond spare linear models.

• One issue that they do not mention in this work was how to
perform the pick step for images.

• They would like to investigate potential uses in speech, video, and
medical domains, as well as recommendation systems.

• They would like to explore theoretical properties (such as the
appropriate number of samples) and computational optimizations
(such as using parallelization and GPU processing)
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• The paper only describes sparse linear models as explanations, but the
framework supports other explanation families, such as decision trees.

• They envision adapting the explanation family based on the dataset and
classi�er.

• Extend framework to support images(better), speech, video, etc.
• LIME framework ready for production and available on GitHub.
• Therefore would like to optimise computation using parallelisation and
GPU processing.
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Recap

• LIME is a framework for explaining predictions made by machine
learning algorithms.

• It explains models by intelligently picking a limited number of
individual explanations.

• Only uses linear models at the moment.

• Is shown to make it signi�cantly easier for people to better the
classi�ers, even non-experts.
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• LIME is able to explain entire ML models by presenting the user with a
limited number of individual, non-redundant explanations, that describe
the model well enough without overwhelming them.



Discussion

• Is it fair that the authors create their data in such a way that Parzen
becomes unusable in their tests?

• What do you expect to happen if the data is very non-linear even in
the local predicitions?

• The K-Lasso algorithm used in Algorithm 1 is explicitly used for
regression analysis and as such it should only work when they use
linear models for their explanations. Is this okay?
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