BerGeo/h2/mbc.py

241 lines
7.3 KiB
Python

import statistics
from math import inf, isnan, sqrt
from typing import Set, List, Tuple
import util
from scipy.optimize import linprog
import scipy
import random
from util import Side, Point, gen_point, display, display_line_only, gen_circular_point, gen_weird_point, gen_triangular_point
def sidedness(slope: float, intersection: float, p3: Point, flipper: callable, eps=0.0000001) -> Side:
# finds where a point is in regards to a line
if flipper(p3.y) - eps <= flipper(slope * p3.x + intersection) <= flipper(p3.y) + eps:
return Side.ON
elif p3.y > slope * p3.x + intersection:
return Side.ABOVE
return Side.BELOW
def solve_1dlp(c: float, constraints: List[Tuple[float, float]]):
"""
:param c: c1
:param constraints: [(ai, bi), ...]
:return: x1
"""
min_ = -10000
max_ = 10000
for constraint in constraints:
(a, b) = constraint
if a == 0:
assert(b >= 0)
if a > 0:
max_ = min(b/a, max_)
elif a < 0:
min_ = max(b/a, min_)
if c > 0:
return min_
else:
return max_
assert solve_1dlp(1, [(-1, -2)]) == 2
assert solve_1dlp(1, [(-1, -2), (-1, -3)]) == 3
assert solve_1dlp(1, [(-1, -3), (-1, -2)]) == 3
assert solve_1dlp(-1, [(1, 3), (1, 2)]) == 2
assert solve_1dlp(1, [(-1, 3), (-1, 2)]) == -2
def new_solve_1dlp(c, constraints, idx):
c1, c2 = c
((a1, a2), b) = constraints[-1]
q, p = b / a2, a1 /a2
interval = [-9999999, 9999999]
for new_idx, ((lel_a1, lel_a2), lel_b) in enumerate(constraints):
bj, aj = (lel_b - lel_a2 * q), (lel_a1 - lel_a2 * p)
if aj < 0 and bj / aj > interval[0]:
interval[0] = bj / aj
elif aj > 0 and bj / aj < interval[1]:
interval[1] = bj/aj
c = -(c1 - c2 * p)
if c < 0:
return interval[0], q - (p * interval[0])
elif c >= 0:
return interval[1], q - (p * interval[1])
def new_solve_2dlp(c, constraints):
c1, c2 = c
x1 = -10000 if c1 > 0 else 10000
x2 = -10000 if c2 > 0 else 10000
for idx, ((a1, a2), b) in enumerate(constraints):
if not (a1*x1 + a2*x2 <= b):
x1,x2 = new_solve_1dlp(c, constraints[:idx+1], idx)
return x1,x2
def solve_2dlp(c: Tuple[float, float], constraints: List[Tuple[Tuple[float, float], float]]):
"""
:param c: (c1, c2)
:param constraints: [(ai1, ai2, bi), ...]
:return: x1, x2
"""
c1, c2 = c
x1 = -10000 if c1 > 0 else 10000
x2 = -10000 if c2 > 0 else 10000
#random.shuffle(constraints)
for idx, ((a1, a2), b) in enumerate(constraints[1:]):
#print("x1 and x2", x1, x2)
#print("{} + {} <= {}".format(a1*x1, a2*x2, b))
#print("pls",a1*x1 + a2*x2)
#print("yes"*10) if isnan(a1*x1+a2*x2) else print("no"*10)
if not (a1*x1 + a2*x2 <= b):
constraint_for_1d = []
new_obj = c[0] - ((c[1]*a1)/a2)
for constraint in constraints[:idx]:
(a_i1, a_i2), b_i = constraint
a_prime = a_i1 - ((a_i2*a1)/a2)
b_prime = b_i - ((a_i2*b)/a2)
constraint_for_1d.append((a_prime, b_prime))
#print("obj", new_obj)
#print("const", constraint_for_1d)
#print("lol",[cons[0] for cons in constraint_for_1d])
#res = linprog([new_obj], [[cons[0]] for cons in constraint_for_1d], [[cons[1]] for cons in constraint_for_1d], bounds=[(None, None)])
x1 = solve_1dlp(new_obj, constraint_for_1d)
#x1 = res.x
#print(res)
x2 = ((b/a2) - (a1/a2)*x1)
return x1, x2
def find_median(points):
num_candidates = min(5, len(points))
candidates = random.sample(points, num_candidates)
candidates.sort(key=lambda p: p.x)
median_i = num_candidates // 2
median = ((candidates[median_i - 1].x + candidates[median_i].x)/2,
(candidates[median_i - 1].y + candidates[median_i].y)/2)
return median[0]
def mbc_ch(points: Set[Point], flipper: callable) -> Set[Point]:
if len(points) < 2:
return points
# Find the point with median x-coordinate, and partition the points on this point
med_x = find_median(points)
#med_x = statistics.median(p.x for p in points)
#print(med_x)
# Find left and right points in regards to median
pl = {p for p in points if p.x < med_x}
pr = {p for p in points if p.x >= med_x}
#print("pl\n",pl)
#print("pr\n",pr)
c = [flipper(med_x), flipper(1)]
A = [[flipper(-p.x), flipper(-1)] for p in points]
b = [flipper(-p.y) for p in points]
# Find the bridge over the vertical line in pm
#slope, intercept = solve_2dlp((flipper(med_x), flipper(1)),
# [((flipper(-p.x), flipper(-1)), flipper(-p.y)) for p in points]) # confirmed correct
slope, intercept = new_solve_2dlp((flipper(med_x), flipper(1)),
[((flipper(-p.x), flipper(-1)), flipper(-p.y)) for p in points])
#print("slope, intercept:",slope, intercept)
res = linprog(c, A, b, bounds=[[None, None], [None, None]], options={"tol": 0.01})
#print("res0, res1:",res.x[0], res.x[1])
#slope, intercept = res.x[0], res.x[1]
#display_line_only(points, slope, intercept, [])
# Find the two points which are on the line, should work
#on = {p for p in points if sidedness(slope, intercept, p, flipper) == Side.ON}
#print("On Points:",on)
#left_point = min(on)
#right_point = max(on)
dist_to_line = lambda p: abs(intercept + slope * p.x - p.y)/sqrt(1 + slope**2)
left_point = min(pl, key = dist_to_line)
right_point = min(pr, key=dist_to_line)
#display_line_only(points, slope, intercept, [left_point, right_point])
#left_point = next(p for p in pl if sidedness(slope, intercept, p, flipper) == Side.ON)
#right_point = next(p for p in pr if sidedness(slope, intercept, p, flipper) == Side.ON)
def find_med_point(points, med_x):
for p in points:
if med_x+0.001 >= p.x >= med_x-0.001:
return {p}
return {}
#print("med point:",find_med_point(points, med_x))
#display_line_only(points, slope, intercept, {left_point, right_point})
# Prune the points between the two line points
pl = {p for p in pl if p.x <= left_point.x}
pr = {p for p in pr if p.x >= right_point.x}
return set.union(mbc_ch(pl, flipper), {left_point, right_point}, mbc_ch(pr, flipper))
def mbc(points: Set[Point]) -> Set[Point]:
return set.union(mbc_ch(points, lambda x: x), mbc_ch(points, lambda x: -x))
if __name__ == '__main__':
random.seed(1337_420)
points = {gen_point(0, 20) for _ in range(20)}
#points = {gen_circular_point(1, 100, 50) for _ in range(200)}
#points = {gen_triangular_point(Point(1,1), Point(51,1), Point(26, 30)) for _ in range(200)}
#points = {Point(x=-33.11091053638924, y=38.88967778961347), Point(x=61.20269947424177, y=-78.96305419217254), Point(x=99.44053842147957, y=-89.11579172297581), Point(x=-92.40380889537532, y=84.33904351991652), Point(x=-90.63139185545595, y=-91.13793846505985)}
#points = {Point(x=5.2, y=9.7), Point(x=5.3, y=4.9), Point(x=3.3, y=3.6), Point(x=9.2, y=4.8), Point(x=9.7, y=5.7), Point(x=5.6, y=8.7)}
upper_hull_points = mbc_ch(points, lambda x: x)
lower_hull_points = mbc_ch(points, lambda x: -x)
display(points, upper_hull_points.union(lower_hull_points))