BerGeo/h2/mbc.py
2018-10-18 11:17:30 +02:00

105 lines
3.7 KiB
Python

import random
from math import sqrt
from typing import Set
from util import Side, Point, gen_point, display, gen_circular_point, gen_triangular_point
def sidedness(slope: float, intersection: float, p3: Point, flipper: callable, eps=0.0000001) -> Side:
# finds where a point is in regards to a line
if flipper(p3.y) - eps <= flipper(slope * p3.x + intersection) <= flipper(p3.y) + eps:
return Side.ON
elif p3.y > slope * p3.x + intersection:
return Side.ABOVE
return Side.BELOW
def solve_1dlp(c, constraints):
c1, c2 = c
((a1, a2), b) = constraints[-1]
q, p = b / a2, a1 / a2
interval = [-10_000, 10_000]
for (lel_a1, lel_a2), lel_b in constraints:
bj, aj = (lel_b - lel_a2 * q), (lel_a1 - lel_a2 * p)
if aj < 0 and bj / aj > interval[0]:
interval[0] = bj / aj
elif aj > 0 and bj / aj < interval[1]:
interval[1] = bj / aj
c = -(c1 - c2 * p)
if c < 0:
return interval[0], q - (p * interval[0])
elif c >= 0:
return interval[1], q - (p * interval[1])
def solve_2dlp(c, constraints):
c1, c2 = c
x1 = -10_000 if c1 > 0 else 10_000
x2 = -10_000 if c2 > 0 else 10_000
for i, ((a1, a2), b) in enumerate(constraints, start=1):
if not (a1*x1 + a2*x2 <= b):
x1, x2 = solve_1dlp(c, constraints[:i])
return x1, x2
def find_median(points):
num_candidates = min(5, len(points))
candidates = random.sample(points, num_candidates)
candidates.sort(key=lambda p: p.x)
median_i = num_candidates // 2
median = ((candidates[median_i - 1].x + candidates[median_i].x)/2,
(candidates[median_i - 1].y + candidates[median_i].y)/2)
return median[0]
def mbc_ch(points: Set[Point], flipper: callable) -> Set[Point]:
if len(points) < 2:
return points
# Find the point with median x-coordinate, and partition the points on this point
med_x = find_median(points)
# Find left and right points in regards to median
pl = {p for p in points if p.x < med_x}
pr = {p for p in points if p.x >= med_x}
# Find the bridge over the vertical line in pm
slope, intercept = solve_2dlp((flipper(med_x), flipper(1)),
[((flipper(-p.x), flipper(-1)), flipper(-p.y)) for p in points])
# Find the two points which are on the line
dist_to_line = lambda p: abs(intercept + slope * p.x - p.y)/sqrt(1 + slope**2)
left_point = min(pl, key=dist_to_line)
right_point = min(pr, key=dist_to_line)
# Prune the points between the two line points
pl = {p for p in pl if p.x <= left_point.x}
pr = {p for p in pr if p.x >= right_point.x}
return set.union(mbc_ch(pl, flipper), {left_point, right_point}, mbc_ch(pr, flipper))
def mbc(points: Set[Point]) -> Set[Point]:
return set.union(mbc_ch(points, lambda x: x), mbc_ch(points, lambda x: -x))
if __name__ == '__main__':
random.seed(1337_420)
points = {gen_point(0, 20) for _ in range(20)}
points = {gen_circular_point(1, 100, 50) for _ in range(200)}
#points = {gen_triangular_point(Point(1,1), Point(51,1), Point(26, 30)) for _ in range(200)}
#points = {Point(x=-33.11091053638924, y=38.88967778961347), Point(x=61.20269947424177, y=-78.96305419217254), Point(x=99.44053842147957, y=-89.11579172297581), Point(x=-92.40380889537532, y=84.33904351991652), Point(x=-90.63139185545595, y=-91.13793846505985)}
#points = {Point(x=5.2, y=9.7), Point(x=5.3, y=4.9), Point(x=3.3, y=3.6), Point(x=9.2, y=4.8), Point(x=9.7, y=5.7), Point(x=5.6, y=8.7)}
upper_hull_points = mbc_ch(points, lambda x: x)
lower_hull_points = mbc_ch(points, lambda x: -x)
display(points, upper_hull_points.union(lower_hull_points))