import random from math import sqrt from typing import Set from util import Side, Point, gen_point, display, gen_circular_point, gen_triangular_point def sidedness(slope: float, intersection: float, p3: Point, flipper: callable, eps=0.0000001) -> Side: # finds where a point is in regards to a line if flipper(p3.y) - eps <= flipper(slope * p3.x + intersection) <= flipper(p3.y) + eps: return Side.ON elif p3.y > slope * p3.x + intersection: return Side.ABOVE return Side.BELOW def solve_1dlp(c, constraints): c1, c2 = c ((a1, a2), b) = constraints[-1] q, p = b / a2, a1 / a2 interval = [-10_000, 10_000] for (lel_a1, lel_a2), lel_b in constraints: bj, aj = (lel_b - lel_a2 * q), (lel_a1 - lel_a2 * p) if aj < 0 and bj / aj > interval[0]: interval[0] = bj / aj elif aj > 0 and bj / aj < interval[1]: interval[1] = bj / aj c = -(c1 - c2 * p) if c < 0: return interval[0], q - (p * interval[0]) elif c >= 0: return interval[1], q - (p * interval[1]) def solve_2dlp(c, constraints): c1, c2 = c x1 = -10_000 if c1 > 0 else 10_000 x2 = -10_000 if c2 > 0 else 10_000 for i, ((a1, a2), b) in enumerate(constraints, start=1): if not (a1*x1 + a2*x2 <= b): x1, x2 = solve_1dlp(c, constraints[:i]) return x1, x2 def find_median(points): num_candidates = min(5, len(points)) candidates = random.sample(points, num_candidates) candidates.sort(key=lambda p: p.x) median_i = num_candidates // 2 median = ((candidates[median_i - 1].x + candidates[median_i].x)/2, (candidates[median_i - 1].y + candidates[median_i].y)/2) return median[0] def mbc_ch(points: Set[Point], flipper: callable) -> Set[Point]: if len(points) < 2: return points # Find the point with median x-coordinate, and partition the points on this point med_x = find_median(points) # Find left and right points in regards to median pl = {p for p in points if p.x < med_x} pr = {p for p in points if p.x >= med_x} # Find the bridge over the vertical line in pm slope, intercept = solve_2dlp((flipper(med_x), flipper(1)), [((flipper(-p.x), flipper(-1)), flipper(-p.y)) for p in points]) left_point = next(p for p in pl if sidedness(slope, intercept, p, flipper) == Side.ON) right_point = next(p for p in pr if sidedness(slope, intercept, p, flipper) == Side.ON) # Find the two points which are on the line #dist_to_line = lambda p: abs(intercept + slope * p.x - p.y)/sqrt(1 + slope**2) #left_point = min(pl, key=dist_to_line) #right_point = min(pr, key=dist_to_line) # Prune the points between the two line points pl = {p for p in pl if p.x <= left_point.x} pr = {p for p in pr if p.x >= right_point.x} return set.union(mbc_ch(pl, flipper), {left_point, right_point}, mbc_ch(pr, flipper)) def mbc(points: Set[Point]) -> Set[Point]: return set.union(mbc_ch(points, lambda x: x), mbc_ch(points, lambda x: -x)) if __name__ == '__main__': random.seed(1337_420) points = {gen_point(0, 20) for _ in range(20)} points = {gen_circular_point(1, 100, 50) for _ in range(200)} #points = {gen_triangular_point(Point(1,1), Point(51,1), Point(26, 30)) for _ in range(200)} #points = {Point(x=-33.11091053638924, y=38.88967778961347), Point(x=61.20269947424177, y=-78.96305419217254), Point(x=99.44053842147957, y=-89.11579172297581), Point(x=-92.40380889537532, y=84.33904351991652), Point(x=-90.63139185545595, y=-91.13793846505985)} #points = {Point(x=5.2, y=9.7), Point(x=5.3, y=4.9), Point(x=3.3, y=3.6), Point(x=9.2, y=4.8), Point(x=9.7, y=5.7), Point(x=5.6, y=8.7)} upper_hull_points = mbc_ch(points, lambda x: x) lower_hull_points = mbc_ch(points, lambda x: -x) display(points, upper_hull_points.union(lower_hull_points))