import statistics from math import inf from typing import Set, List, Tuple from util import Side, Point, gen_point, display def sidedness(slope: float, intersection: float, p3: Point, linprog_flipper: callable, eps=0.0000001) -> Side: # finds where a point is in regards to a line if linprog_flipper(p3.y) - eps <= linprog_flipper(slope * p3.x + intersection) <= linprog_flipper(p3.y) + eps: return Side.ON elif p3.y > slope * p3.x + intersection: return Side.ABOVE return Side.BELOW def solve_1dlp(c: float, constraints: List[Tuple[float, float]]): """ :param c: c1 :param constraints: [(ai, bi), ...] :return: x1 """ try: if c > 0: return max(b/a for a, b in constraints if a < 0) return min(b/a for a, b in constraints if a > 0) except ValueError: # unbounded return -inf if c > 0 else inf assert solve_1dlp(1, [(-1, -2)]) == 2 assert solve_1dlp(1, [(-1, -2), (-1, -3)]) == 3 assert solve_1dlp(1, [(-1, -3), (-1, -2)]) == 3 assert solve_1dlp(-1, [(1, 3), (1, 2)]) == 2 assert solve_1dlp(1, [(-1, 3), (-1, 2)]) == -2 def solve_2dlp(c: Tuple[float, float], constraints: List[Tuple[Tuple[float, float], float]]): """ :param c: (c1, c2) :param constraints: [(ai1, ai2, bi), ...] :return: x1, x2 """ c1, c2 = c x1, x2 = (-inf, -inf) if c1 > 0 else (inf, inf) #random.shuffle(constraints) for i, ((a1, a2), b) in enumerate(constraints[1:], start=1): if a1*x1 + a2*x2 <= b: continue x1 = solve_1dlp(c1 - c2*a1/a2, [(ai1 - ai2*a1 / a2, bi - ai2*b / a2) for (ai1, ai2), bi in constraints[:i]]) x2 = (b - a1*x1) / a2 return x1, x2 def mbc_ch(points: Set[Point], linprog_flipper: callable) -> Set[Point]: if len(points) <= 2: return points # Find the point with median x-coordinate, and partition the points on this point med_x = statistics.median(p.x for p in points) # Find left and right points in regards to median pl = {p for p in points if p.x < med_x} pr = {p for p in points if p.x >= med_x} # Find the bridge over the vertical line in pm c = (linprog_flipper(med_x), linprog_flipper(1)) A = [(linprog_flipper(-p.x), linprog_flipper(-1)) for p in points] b = [linprog_flipper(-p.y) for p in points] #result = linprog(c, A, b, bounds=[(None, None), (None, None)], options={"tol": 0.00001}) #slope, intercept = result.x[0], result.x[1] slope, intercept = solve_2dlp(c, list(zip(A, b))) #display_line_only(points, slope, intercept, []) # Find the two points which are on the line, should work left_point = next(p for p in pl if sidedness(slope, intercept, p, linprog_flipper) == Side.ON) right_point = next(p for p in pr if sidedness(slope, intercept, p, linprog_flipper) == Side.ON) # Prune the points between the two line points pl = {p for p in pl if p.x <= left_point.x} pr = {p for p in pr if p.x >= right_point.x} return set.union(mbc_ch(pl, linprog_flipper), {left_point, right_point}, mbc_ch(pr, linprog_flipper)) points = {gen_point(1, 10) for _ in range(20)} upper_hull_points = mbc_ch(points, lambda x: x) lower_hull_points = mbc_ch(points, lambda x: -x) display(points, upper_hull_points.union(lower_hull_points))