
Computatinal Geometry: Theory and Experimentation (2018)

Project 2: Convex Hull Computation

Peyman Afshani

September 12, 2018

You have two options when it comes to this project:

1. Do parts (A), (B), (C), and (D). The rest of the project is optional (these are marked with a +).

2. Or you can do parts (A), (E), (F), and (H) and treat the rest of the project as optional. If you choose
this, you don’t need to run extensive tests; simply confirm that the algorithm runs in O(n log n) time
by running a few experiments.

In this project, you will implement a few convex hull algorithms and you will compare their performance.
After implementing each algorithm and making sure that it runs correctly, you must evaluate its performance
on some “test cases”. You should try to follow sound algorithm engineering principles in doing so (select a
good design point, i.e., factors and levels). For this project, and to reduce your workload, you can
run all your experiments on the same machine.

However, when running these tests, you should pay attention to create a diverse set of “input classes”.
The first class should be input points that are generated uniformly randomly inside a square, the second
point sets generated uniformly randomly inside a circle, and the third point sets whose points lie on the
curve Y = X2. You are encouraged to pick additional test classes to improve the quality of your report.

To put your report more inline with sound practices of algorithm engineering, you should think well
about “performance metrics” that you wish to measure. The prominent one would be the running time,
however, depending on your experiment or your hypothesis, you can measure the running time differently.
For example, you can measure the following times separately:

1. The time it takes to read the input

2. The time needed for computation

3. The time for smaller computational tasts (e.g., separate the sorting time in Graham’s scan).

In addition, also discuss the following performance metric in your report:

• The number of points on the convex hull

To further increase the quality of your report, you can do the following:

• Come up with the model that describes the number of points on the convex hull for each input class

• Verify your model experimentally

Finally, include any other interesting finding that comes up during your experiments for a fuller and more
satisfying report.

Part A. Implement and test the incremental convex hull algorithm (Graham’s Scan) discussed in the class
(the one discussed in pages 6 and 7 of BKOS). Let’s call this algorithm INC CH.

1

q1

q2

q

s

P`

Pr

Figure 1: QuickHull finds the upper hull between q1 and q2. It is assumed that all the points below the
segment s = q1q2 have been pruned. We find the point furthest away from the line segment s, then we prune
all the points inside the triangle q1q2s and then we recurse on the point sets P` and Pr that are to the left
and right of q respectively.

Part B. Implement the quickhull algorithm, described by the following pseudocode. Let’s call this algo-
rithm QH CH. This algorithm builds the upper hull.

· To initialize, find the point q1 with the smallest x-coordinate and the point q2 with the largest x-
coordinate, and form the line segment s by connecting them. Then prune all the points below s.

· QuickHull(q1q2, P): // Finds the upper hull of point set P above segment s = q1q2

1. Find the point q above s that has the largest distance to s.

2. Add q to the upper hull

3. Prune all the points inside the triangle formed by q, q1 and q2, and partition the remaining points into
two subsets P` and Pr consisting of points that lie to the left of q and points that lie to the right of q.

4. Connect q1 to q to form segment s1 and then connect q2 to q to form segment s2.

5. Recurse on QuickHull(s1, P`) and QuickHull(s2, Pr)

Part C. Implement and test the gift-wrapping convex hull algorithm discussed in the class. Let’s call this
algorithm GIFT CH. This algorithm finds the full convex hull.

· GiftWrapping(P): // Finds the convex hull of point set P

· To initialize, find the point q1 with the smallest x-coordinate. Initialize an upwards ray −→r from q1

(i.e., a vertical line segment with one endpoint being q1 and the other endpoint at Y = +∞). Set the
pivot p to be q1.

1. Do the following:

(a) Iterate over all the points in P and find the point v that minimizes the angle between −→r and
−→pv.

(b) Add v to the convex hull

(c) Set −→r ← −→pv
(d) Set p← v

2. Until p equals q1.

2

Part D. Implement the marriage-before-conquest convex hull algorithm. Follow the pseudocode given
below for the upper hull construction (use a similar code for the lower hull). Let’s call this algorithm
MbC CH.

1. Find the point with median x coordinate pm = (xm, y) and partition the input into two sets P` and
Pr where P` contains all the points with x-coordinate smaller than xm and Pr contains the rest of the
points.

2. Find the “bridge” over the vertical line X = xm (i.e., the upper hull edge that intersects line X = xm).
You need to implement linear programming for this step. Let (xi, yi) and (xj , yj) be the left and right
end points of the bridge.

3. Prune the points that lie under the line segment (xi, yi), (xj , yj) (these will be the points whose x-
coordinates lie between xi and xj .

4. Recursively compute the upper hull of P` and Pr.

Next, add one more pruning step to the above algorithm and call it MbC2 CH. This extra pruning step
is the step 2 in the algorithm below.

1. Find the point with median x coordinate pm = (xm, y) and partition the input into two sets P` and
Pr where P` contains all the points with x-coordinate smaller than xm and Pr contains the rest of the
points.

2. Find the point p` with the smallest x-coordinate (if there are more than one, take the one with the
largest y-coordinate) and the point pr with the largest x-coordinate (if there are more than one, take
the one with the smallest y-coordinate). Note that these can be done at the same time as step 1. Prune
all the points that lie under the line segment p`pr.

3. Find the “bridge” over the vertical line X = xm (i.e., the upper hull edge that intersects line X = xm).
Let (xi, yi) and (xj , yj) be the left and right end points of the bridge.

4. Prune the points that lie under the line segment (xi, yi), (xj , yj) (these will be the points whose x-
coordinate lie between xi and xj .

5. Recursively compute the upper hull of P` and Pr.

Remark. Instead of finding the median of a set S exactly, you can use an approximate median: sample 3
(or 5) random elements from S and then return the median of the sampled elements.

Part E+. Prove that MbC CH algorithm runs in O(n log h) time where h is the number of points on the
convex hull (hint: look at the recursion tree. Observe that each time you recurse, the number of points
halves).

Part F+. Let x1 < · · · < xh be the x-coordinates of the points on the upper hull and let ni be the number
of input points p = (x, y) such that xi ≤ x < xi+1, 1 ≤ i < h. Show that the upper hull computation in
MbC CH runs in time

O

(
h−1∑
i=1

ni log

(
n

ni

))
.

Part G+. Implement and measure the performance of Chan, Snoeyick and Yap’s convex hull algorithm.
Let’s call this CSY CH. For reference, the rough pseudocode of the upper hull construction in this algorithm
is the following.

3

UpperHull(P , p`, pr): Here, P is the input point set, p` is the point with the smallest x-coordinate in
P , Pr is the point with the largest x-coordinate in P and the procedure computes the upper hull of P .

1. Prune points below the line segment p`pr.

2. Pair points arbitrarily into bn/2c pairs, (si, ti), 1 ≤ i ≤ bn/2c, in which si has smaller x-coordinate
than ti.

3. Find the pair (sm, tm) with the median slope among the pairs (you can use the median finding heuristic
mentioned in the previous hint).

4. Find the maximal point pm = (xm, ym) in the direction of (sm, tm).

5. Partition P into two sets: P` and Pr in which P` contains all the points of P with x-coordinate larger
than xm and Pr contains the rest.

6. Prune Pr: if Pr contains a pair (si, ti) with slope larger than the median slope, then prune si.

7. Prune P`: if Pr contains a pair (si, ti) with slope smaller than the median slope, then prune ti.

8. Recursively compute the upper hull of Pr and P`.

Part H+. Consider a partition, ∆, of the point set P into k disjoint subsets P1, · · · , Pk and let ni = |Pi|,
1 ≤ i ≤ k. We say that ∆ is “good” if for every i, 1 ≤ i ≤ k, either ni = 1 or Pi can be placed inside a
triangle ti in such a way that ti completely lies below the upper hull of P . Define the “entropy” of ∆ as

H∆ =

k∑
i=1

ni log(n
ni

)

n
.

Prove that for any good partition ∆, the upper hull computation in CSY CH algorithm or MbC2 CH
algorithm runs in O(nH∆) time. Prove that this is not the case for MbC CH algorithm, that is, there exists
a point set P and a good partition ∆ such that nH∆ is asymptotically smaller than the time it takes for
MbC CH algorithm to compute the upper hull of P .

4

