carlsens attempt

This commit is contained in:
Thomas Carlsen 2018-10-08 13:52:08 +02:00
parent a3a97f9c00
commit 0553d80379

193
h2/MBC_carlsen.py Normal file
View File

@ -0,0 +1,193 @@
import matplotlib.pyplot as plt
import collections
from enum import Enum, auto
from random import randint
Point = collections.namedtuple("Point", "x y")
class Side(Enum):
ON = auto()
ABOVE = auto()
BELOW = auto()
def sidedness(slope, intersection, p3, eps=0.0000001):
print(slope * p3[0] + intersection )
""" finds where a point is in regards to a line """
if p3[1] - eps <= slope * p3[0] + intersection <= p3[1] + eps or p3[0] - eps <= (p3[1] - intersection)/slope <= p3[0] + eps:
return Side.ON
elif p3[1] > slope * p3[0] + intersection:
return Side.ABOVE
return Side.BELOW
def diplay_prune_points(points, p1, p2):
xs = [p[0] for p in points]
ys = [p[1] for p in points]
plt.plot(xs, ys, 'ro')
plt.plot([p1[0], p2[0]], [p1[1], p2[1]])
plt.show()
def solve1D(points, xm, iteration_num):
#print("iter:", iteration_num)
point = points[iteration_num]
if iteration_num == 0:
return -float('Inf'), -float('Inf')
# lad point[1] = point[0] * a + b <=> y = x * a + b
# isolere b og sæt ind i constraints
a = None
b = point[1] - point[0] # * a
# minimere xm*a + b, hvor b har ny værdi
# Vi regner kun med koefficienterne
# obj_fun = (xm - point[0]) + points[1] = (xm*a - xi*a) + y
# max eller min
#print("XM og point[0]:", xm, point[0])
a = xm - point[0]
#print("a lige her:", a)
a_constraint_list = []
# looping over the i constraints
for p in points[:iteration_num]:
# we can't make a straigt vertical line
if p[0] == point[0]:
if p[1] > point[1]:
p[0] = p[0] + 0.0001
else:
point[0] = point[0] + 0.0001
print(p, point)
# Spring over den i'te constraint
if p != point:
# y_j - yi
c = p[1] - point[1]
# x_j * a - xi * a
a_diff = p[0] - point[0]
print(c, a_diff, c/a_diff)
# det her er forkert og skal fikses
if a >= 0 and a_diff < 0:
a_constraint_list.append(-float('Inf'))
else:
a_constraint_list.append(c/a_diff)
# hvis a > 0 så min
# hvis a < 0 så max.
if a >= 0:
v1 = max(a_constraint_list)
v2 = point[1] - point[0] * v1
v = (v1, v2)
elif a < 0:
v1 = min(a_constraint_list)
v2 = point[1] - point[0] * v1
v = (v1, v2)
return v
def findBridge(points, xm):
if xm > 0:
v = (-float('Inf'), -float('Inf'))
elif xm < 0:
4 # noget
else:
# TODO: xm == 0
4
# looping over constraints
for point in points:
# checking for violation
if not point[1] <= point[0] * v[0] + v[1]:
v = solve1D(points, xm, points.index(point))
#print("HER OVER: ", v)
slope = v[0]
intercept = v[1]
line_points = [p for p in points if sidedness(slope, intercept, p) == Side.ON]
if len(line_points) > 3:
print("Halli HAllo")
print(line_points)
return line_points[0], line_points[1]
def find_median(points):
if len(points) % 2 == 0:
first_med_idx = int(len(points) / 2 - 1)
second_med_idx = int(len(points) / 2)
return (points[first_med_idx][0] + points[second_med_idx][0]) / 2
else:
idx = int((len(points)-1) / 2)
return points[idx][0]
def upperHull(points, all_points):
print("Punkter:", points)
if len(points) < 2:
return []
xm = find_median(points)
# end-points of bridge
(xi, yi), (xj, yj) = findBridge(points, xm)
#print(xm)
print((xi, yi), (xj, yj))
prune_points = [p for p in points if p[0] < xi or xj < p[0]] + [(xi, yi), (xj, yj)]
# Neden for er mest for visualisering
prune_all_points = [p for p in all_points if p[0] < xi or xj < p[0]] + [(xi, yi), (xj, yj)]
diplay_prune_points(prune_all_points, (xi, yi), (xj, yj))
Pl = [p for p in prune_points if p[0] < xm]
Pr = [p for p in prune_points if p[0] >= xm]
#print("Pl:", Pl, "Pr", Pr)
print("\n")
# recurse results and return
ret = [(xi, yi), (xj, yj)]
ret = ret + [p for p in upperHull(Pl, prune_all_points) if p not in ret]
ret = ret + [p for p in upperHull(Pr, prune_all_points) if p not in ret]
return ret
p1 = (2, 1)
p2 = (3, 4)
p3 = (5, 2)
p4 = (6, 5)
list_of_points = []
list_of_points.append(p1)
list_of_points.append(p2)
list_of_points.append(p3)
list_of_points.append(p4)
xs = [p[0] for p in list_of_points]
ys = [p[1] for p in list_of_points]
plt.plot(xs, ys, 'ro')
plt.show()
result = list(sorted(upperHull(list_of_points, list_of_points)))
result
res_xs = [p[0] for p in result]
res_ys = [p[1] for p in result]
#print("result", result)
plt.plot(res_xs, res_ys)
plt.plot(xs, ys, 'ro')
plt.show()