BerGeo/h2/tmptest.py

220 lines
12 KiB
Python
Raw Normal View History

2018-10-21 13:52:02 +00:00
import json
2018-10-11 12:38:59 +00:00
import random
from time import time
2018-10-17 10:56:46 +00:00
from collections import namedtuple
2018-10-11 12:38:59 +00:00
import util
from gift_wrapper import rapper
from graham import graham_scan
2018-10-18 16:41:18 +00:00
from mbc import mbc, mbc_no_shuffle, mbc2_no_shuffle, mbc2
from profile import Profiler
2018-10-11 12:38:59 +00:00
from quick_hull import quick_hull
2018-10-17 10:56:46 +00:00
import os.path
#random.seed(1337_420)
TimedResult = namedtuple("TimedResult", "algorithm points running_time")
2018-10-18 16:41:18 +00:00
def time_it(f: callable, args: tuple = ()):
2018-10-17 10:56:46 +00:00
start = time()
2018-10-18 16:41:18 +00:00
f(*args)
2018-10-17 10:56:46 +00:00
return str(time() - start)
def initiate_file(file):
with open(file, "w+") as tmp:
tmp.write("algorithm\t\tpoints\t\ttime")
def write_to_log(file, data):
if not os.path.isfile(file):
initiate_file(file)
tmp = []
for res in data:
line = str.join("\t\t", res)
print(line)
tmp.append(line)
write_string = "\n" + str.join("\n", tmp)
with open(file, "a+") as open_file:
open_file.write(write_string)
2018-10-18 16:41:18 +00:00
def calculate_hulls(number_of_points, points):
return [TimedResult("graham", number_of_points, time_it(graham_scan, args=(points,))),
TimedResult("gift", number_of_points, time_it(rapper, args=(points,))),
TimedResult("quick", number_of_points, time_it(quick_hull, args=(points,))),
TimedResult("mbch", number_of_points, time_it(mbc, args=(points,))),
TimedResult("mbch2", number_of_points, time_it(mbc2, args=(points,)))]
2018-10-18 10:07:08 +00:00
2018-10-17 10:56:46 +00:00
2018-10-18 16:41:18 +00:00
def do_square_tests(number_of_points):
points_square = {util.gen_point(0, 100) for _ in range(number_of_points)}
number_of_points = str(number_of_points)
2018-10-11 12:38:59 +00:00
2018-10-18 16:41:18 +00:00
results = calculate_hulls(number_of_points, points_square)
write_to_log("square_tests.log", results)
2018-10-11 13:54:52 +00:00
2018-10-17 10:56:46 +00:00
2018-10-18 16:41:18 +00:00
def do_circular_tests(number_of_points):
points_circular = {util.gen_point(0, 100) for _ in range(number_of_points)}
2018-10-17 10:56:46 +00:00
2018-10-18 16:41:18 +00:00
results = calculate_hulls(number_of_points, points_circular)
2018-10-17 10:56:46 +00:00
write_to_log("circular_tests.log", results)
2018-10-18 16:41:18 +00:00
def do_triangular_tests(number_of_points):
2018-10-17 10:56:46 +00:00
left, right, top = util.Point(1,1), util.Point(51,1), util.Point(26,40)
2018-10-18 16:41:18 +00:00
points = {util.gen_triangular_point(left, right, top) for _ in range(number_of_points)}
2018-10-17 10:56:46 +00:00
2018-10-18 16:41:18 +00:00
results = calculate_hulls(number_of_points, points)
2018-10-17 10:56:46 +00:00
write_to_log("triangular_tests.log", results)
2018-10-18 16:41:18 +00:00
def do_quadratic_tests(number_of_points):
points = {util.gen_weird_point(-10, 10) for _ in range(number_of_points)}
2018-10-17 10:56:46 +00:00
2018-10-18 16:41:18 +00:00
results = calculate_hulls(number_of_points, points)
2018-10-17 10:56:46 +00:00
write_to_log("quadratic_tests.log", results)
2018-10-18 10:07:08 +00:00
def sanity_check():
points = {util.gen_point(1, 50) for i in range(100)}
2018-10-11 13:54:52 +00:00
graham = set(graham_scan(points))
gift = set(rapper(points))
quick = quick_hull(points)
mbch = set.union(mbc(points))
2018-10-18 16:41:18 +00:00
mbch2 = set.union(mbc2(points))
assert gift == graham == quick == mbch == mbch2
2018-10-21 13:52:02 +00:00
def do_one_profile(num_points):
print(f"==================================== PROFILE ({num_points}) ====================================")
2018-10-18 16:41:18 +00:00
random.seed(6)
2018-10-21 13:52:02 +00:00
points = {util.gen_point(0, 100) for _ in range(num_points)}
2018-10-18 16:41:18 +00:00
tests = [
2018-10-21 13:52:02 +00:00
#("graham_scan", graham_scan),
#("gift_wrapper", rapper),
#("quick_hull", quick_hull),
2018-10-18 16:41:18 +00:00
("mbc", mbc),
("mbc2", mbc2),
("mbc_no_shuffle", mbc_no_shuffle),
("mbc2_no_shuffle", mbc2_no_shuffle),
]
2018-10-21 13:52:02 +00:00
results = {}
2018-10-18 16:41:18 +00:00
for algorithm, func in tests:
Profiler.reset()
func(points)
2018-10-21 13:52:02 +00:00
times = dict(Profiler.results)
2018-10-18 16:41:18 +00:00
print(f"-------------- {algorithm} --------------")
print("Times:", times)
total = times[algorithm]
print("Total:", total)
sum_profiled = sum(times.values()) - total
print("Total Profiled:", sum_profiled)
2018-10-21 13:52:02 +00:00
unaccounted = total - sum_profiled
print("Unaccounted:", unaccounted)
results[algorithm] = {
"times": times,
"total": total,
"total_profiled": sum_profiled,
"unaccounted": unaccounted,
}
return results
def do_profile():
import pandas as pd
import numpy as np
import altair as alt
### GATHER DATA ###
#results = {num_points: do_one_profile(num_points) for num_points in (10_000, 30_000, 60_000)}
results = {"10000": {"mbc": {"times": {"finding median": 0.0010907649993896484, "partitioning set": 0.00837850570678711, "shuffling constraints": 0.01737236976623535, "solving 1D LP": 0.018637895584106445, "solving 2D LP": 0.023772716522216797, "finding bridge points": 0.00942373275756836, "pruning between line points": 0.0062139034271240234, "mbc": 0.08948898315429688}, "total": 0.08948898315429688, "total_profiled": 0.08488988876342773, "unaccounted": 0.004599094390869141}, "mbc2": {"times": {"extra pruning step": 0.021185636520385742, "finding median": 0.00042319297790527344, "partitioning set": 0.002390623092651367, "shuffling constraints": 0.00530552864074707, "solving 1D LP": 0.002721548080444336, "solving 2D LP": 0.004323244094848633, "finding bridge points": 0.0038061141967773438, "pruning between line points": 0.0017795562744140625, "mbc2": 0.0463566780090332}, "total": 0.0463566780090332, "total_profiled": 0.04193544387817383, "unaccounted": 0.004421234130859375}, "mbc_no_shuffle": {"times": {"finding median": 0.0011930465698242188, "partitioning set": 0.008675098419189453, "solving 1D LP": 0.012013912200927734, "solving 2D LP": 0.016475915908813477, "finding bridge points": 0.009999275207519531, "pruning between line points": 0.006704092025756836, "mbc_no_shuffle": 0.0634622573852539}, "total": 0.0634622573852539, "total_profiled": 0.05506134033203125, "unaccounted": 0.008400917053222656}, "mbc2_no_shuffle": {"times": {"extra pruning step": 0.020714282989501953, "finding median": 0.0004355907440185547, "partitioning set": 0.0022919178009033203, "solving 1D LP": 0.004298210144042969, "solving 2D LP": 0.005736112594604492, "finding bridge points": 0.004106044769287109, "pruning between line points": 0.0017347335815429688, "mbc2_no_shuffle": 0.04152178764343262}, "total": 0.04152178764343262, "total_profiled": 0.03931689262390137, "unaccounted": 0.00220489501953125}}, "30000": {"mbc": {"times": {"finding median": 0.0033922195434570312, "partitioning set": 0.027561187744140625, "shuffling constraints": 0.03943347930908203, "solving 1D LP": 0.03251838684082031, "solving 2D LP": 0.04914522171020508, "finding bridge points": 0.02995467185974121, "pruning between line points": 0.018335342407226562, "mbc": 0.23250341415405273}, "total": 0.23250341415405273, "total_profiled": 0.20034050941467285, "unaccounted": 0.03216290473937988}, "mbc2": {"times": {"extra pruning step": 0.07657957077026367, "finding median": 0.0013115406036376953, "partitioning set": 0.009799957275390625, "shuffling constraints": 0.01538705825805664, "solving 1D LP": 0.018373966217041016, "solving 2D LP": 0.023766040802001953, "finding bridge points": 0.01176595687866211, "pruning between line points": 0.0074269771575927734, "mbc2": 0.1977553367614746}, "total": 0.1977553367614746, "total_profiled": 0.16441106796264648, "unaccounted": 0.033344268798828125}, "mbc_no_shuffle": {"times": {"finding median": 0.003788471221923828, "partitioning set": 0.0294649600982666, "solving 1D LP": 0.01887059211730957, "solving 2D LP": 0.028406858444213867, "finding bridge points": 0.026410341262817383, "pruning between line points": 0.01907038688659668, "mbc_no_shuffle": 0.16133356094360352}, "total": 0.16133356094360352, "total_profiled": 0.12601161003112793, "unaccounted": 0.035321950912475586}, "mbc2_no_shuffle": {"times": {"extra pruning step": 0.07852339744567871, "finding median": 0.0014028549194335938, "partitioning set": 0.010036468505859375, "solving 1D LP": 0.008901834487915039, "solving 2D LP": 0.012744665145874023, "finding bridge points": 0.012570381164550781, "pruning between line points": 0.007673025131225586, "mbc2_no_shuffle": 0.14619135856628418}, "total": 0.14619135856628418, "total_profiled": 0.1318526268005371, "unaccounted": 0.01433873176574707}}, "60000": {"mbc": {"times": {"finding median": 0.006650209426879883, "partitioning set": 0.06662178039550781, "shuffling constraints": 0.08104324340820312, "solving 1D LP": 0.08928251266479492, "solving 2D LP": 0.12702107429504395, "finding bridge points": 0.060240983963012695, "pruning between lin
print("================== RESULTS ==================")
print(json.dumps(results))
### PREPARE DATA ###
num_points = list(results.keys())
algorithms = [algorithm for algorithm in results[num_points[0]].keys()]
steps = (
"finding median",
"partitioning set",
"solving 1D LP",
"solving 2D LP",
"finding bridge points",
"pruning between line points",
"shuffling constraints",
"extra pruning step",
)
def prep_df(df, name):
df = df.stack().reset_index()
df.columns = ['c1', 'c2', 'values']
df['DF'] = name
return df
dfs = []
for step in steps:
res = [[data["times"].get(step, 0)
for algorithm, data in results[points].items()]
for points in num_points]
df = pd.DataFrame(res, index=num_points, columns=algorithms)
dfs.append(prep_df(df, step))
df = pd.concat(dfs)
### PLOT DATA ###
chart = alt.Chart(df).mark_bar().encode(
# tell Altair which field to group columns on
x=alt.X('c2:N',
axis=alt.Axis(
title='')),
# tell Altair which field to use as Y values and how to calculate
y=alt.Y('sum(values):Q',
axis=alt.Axis(
grid=False,
title='')),
# tell Altair which field to use to use as the set of columns to be represented in each group
column=alt.Column('c1:N',
axis=alt.Axis(
title='')),
# tell Altair which field to use for color segmentation
color=alt.Color('DF:N',
scale=alt.Scale(
# make it look pretty with an enjoyable color pallet
range=['#96ceb4', '#ffcc5c', '#ff6f69'],
),
)) \
.configure_facet_cell(
# remove grid lines around column clusters
strokeWidth=0.0)
chart.savechart('chart.html')
2018-10-11 13:54:52 +00:00
2018-10-17 10:56:46 +00:00
2018-10-18 09:53:43 +00:00
if __name__ == '__main__':
2018-10-18 10:07:08 +00:00
sanity_check()
2018-10-18 16:41:18 +00:00
do_profile()
exit()
2018-10-18 09:53:43 +00:00
for i in range(50, 1000, 50):
do_square_tests(i)