2018-09-24 13:27:08 +00:00
|
|
|
import statistics
|
2018-10-16 13:54:44 +00:00
|
|
|
from math import inf, isnan, sqrt
|
2018-10-08 16:31:00 +00:00
|
|
|
from typing import Set, List, Tuple
|
2018-10-16 13:54:44 +00:00
|
|
|
import util
|
|
|
|
from scipy.optimize import linprog
|
|
|
|
import scipy
|
|
|
|
import random
|
2018-10-08 13:17:02 +00:00
|
|
|
|
2018-10-17 10:09:24 +00:00
|
|
|
from util import Side, Point, gen_point, display, display_line_only, gen_circular_point, gen_weird_point, gen_triangular_point
|
2018-09-24 13:27:08 +00:00
|
|
|
|
|
|
|
|
2018-10-11 13:54:52 +00:00
|
|
|
def sidedness(slope: float, intersection: float, p3: Point, flipper: callable, eps=0.0000001) -> Side:
|
2018-10-09 17:26:55 +00:00
|
|
|
# finds where a point is in regards to a line
|
2018-10-11 13:54:52 +00:00
|
|
|
if flipper(p3.y) - eps <= flipper(slope * p3.x + intersection) <= flipper(p3.y) + eps:
|
2018-10-08 13:17:02 +00:00
|
|
|
return Side.ON
|
|
|
|
elif p3.y > slope * p3.x + intersection:
|
|
|
|
return Side.ABOVE
|
|
|
|
return Side.BELOW
|
|
|
|
|
|
|
|
|
2018-10-08 16:31:00 +00:00
|
|
|
def solve_1dlp(c: float, constraints: List[Tuple[float, float]]):
|
|
|
|
"""
|
|
|
|
:param c: c1
|
|
|
|
:param constraints: [(ai, bi), ...]
|
|
|
|
:return: x1
|
|
|
|
"""
|
2018-10-16 13:54:44 +00:00
|
|
|
min_ = -10000
|
|
|
|
max_ = 10000
|
|
|
|
|
|
|
|
for constraint in constraints:
|
|
|
|
(a, b) = constraint
|
|
|
|
|
|
|
|
if a == 0:
|
|
|
|
assert(b >= 0)
|
|
|
|
|
|
|
|
if a > 0:
|
|
|
|
max_ = min(b/a, max_)
|
|
|
|
elif a < 0:
|
|
|
|
min_ = max(b/a, min_)
|
|
|
|
|
|
|
|
|
|
|
|
if c > 0:
|
|
|
|
return min_
|
|
|
|
else:
|
|
|
|
return max_
|
|
|
|
|
2018-10-09 15:52:53 +00:00
|
|
|
|
|
|
|
|
2018-10-09 17:26:55 +00:00
|
|
|
assert solve_1dlp(1, [(-1, -2)]) == 2
|
|
|
|
assert solve_1dlp(1, [(-1, -2), (-1, -3)]) == 3
|
|
|
|
assert solve_1dlp(1, [(-1, -3), (-1, -2)]) == 3
|
|
|
|
assert solve_1dlp(-1, [(1, 3), (1, 2)]) == 2
|
|
|
|
assert solve_1dlp(1, [(-1, 3), (-1, 2)]) == -2
|
2018-10-08 16:31:00 +00:00
|
|
|
|
2018-10-16 13:54:44 +00:00
|
|
|
def new_solve_1dlp(c, constraints, idx):
|
|
|
|
c1, c2 = c
|
2018-10-17 10:09:24 +00:00
|
|
|
((a1, a2), b) = constraints[-1]
|
2018-10-16 13:54:44 +00:00
|
|
|
q, p = b / a2, a1 /a2
|
|
|
|
|
|
|
|
interval = [-9999999, 9999999]
|
|
|
|
|
|
|
|
for new_idx, ((lel_a1, lel_a2), lel_b) in enumerate(constraints):
|
2018-10-17 10:09:24 +00:00
|
|
|
|
|
|
|
bj, aj = (lel_b - lel_a2 * q), (lel_a1 - lel_a2 * p)
|
|
|
|
if aj < 0 and bj / aj > interval[0]:
|
|
|
|
interval[0] = bj / aj
|
|
|
|
elif aj > 0 and bj / aj < interval[1]:
|
|
|
|
interval[1] = bj/aj
|
2018-10-16 13:54:44 +00:00
|
|
|
|
|
|
|
c = -(c1 - c2 * p)
|
|
|
|
if c < 0:
|
|
|
|
return interval[0], q - (p * interval[0])
|
|
|
|
elif c >= 0:
|
|
|
|
return interval[1], q - (p * interval[1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def new_solve_2dlp(c, constraints):
|
|
|
|
c1, c2 = c
|
|
|
|
x1 = -10000 if c1 > 0 else 10000
|
|
|
|
x2 = -10000 if c2 > 0 else 10000
|
|
|
|
|
|
|
|
for idx, ((a1, a2), b) in enumerate(constraints):
|
|
|
|
if not (a1*x1 + a2*x2 <= b):
|
|
|
|
x1,x2 = new_solve_1dlp(c, constraints[:idx+1], idx)
|
|
|
|
return x1,x2
|
|
|
|
|
|
|
|
|
2018-10-08 16:31:00 +00:00
|
|
|
|
|
|
|
def solve_2dlp(c: Tuple[float, float], constraints: List[Tuple[Tuple[float, float], float]]):
|
|
|
|
"""
|
|
|
|
:param c: (c1, c2)
|
|
|
|
:param constraints: [(ai1, ai2, bi), ...]
|
|
|
|
:return: x1, x2
|
|
|
|
"""
|
2018-10-09 17:26:55 +00:00
|
|
|
c1, c2 = c
|
2018-10-16 13:54:44 +00:00
|
|
|
x1 = -10000 if c1 > 0 else 10000
|
|
|
|
x2 = -10000 if c2 > 0 else 10000
|
2018-10-11 15:10:31 +00:00
|
|
|
|
2018-10-09 17:26:55 +00:00
|
|
|
#random.shuffle(constraints)
|
2018-10-09 15:52:53 +00:00
|
|
|
|
2018-10-16 13:54:44 +00:00
|
|
|
|
|
|
|
for idx, ((a1, a2), b) in enumerate(constraints[1:]):
|
|
|
|
|
|
|
|
#print("x1 and x2", x1, x2)
|
|
|
|
|
|
|
|
|
|
|
|
#print("{} + {} <= {}".format(a1*x1, a2*x2, b))
|
|
|
|
#print("pls",a1*x1 + a2*x2)
|
|
|
|
|
|
|
|
#print("yes"*10) if isnan(a1*x1+a2*x2) else print("no"*10)
|
|
|
|
|
|
|
|
if not (a1*x1 + a2*x2 <= b):
|
|
|
|
constraint_for_1d = []
|
|
|
|
|
|
|
|
new_obj = c[0] - ((c[1]*a1)/a2)
|
|
|
|
|
|
|
|
for constraint in constraints[:idx]:
|
|
|
|
(a_i1, a_i2), b_i = constraint
|
|
|
|
|
|
|
|
a_prime = a_i1 - ((a_i2*a1)/a2)
|
|
|
|
b_prime = b_i - ((a_i2*b)/a2)
|
|
|
|
constraint_for_1d.append((a_prime, b_prime))
|
|
|
|
|
|
|
|
#print("obj", new_obj)
|
|
|
|
#print("const", constraint_for_1d)
|
|
|
|
|
|
|
|
#print("lol",[cons[0] for cons in constraint_for_1d])
|
|
|
|
#res = linprog([new_obj], [[cons[0]] for cons in constraint_for_1d], [[cons[1]] for cons in constraint_for_1d], bounds=[(None, None)])
|
|
|
|
x1 = solve_1dlp(new_obj, constraint_for_1d)
|
|
|
|
#x1 = res.x
|
|
|
|
#print(res)
|
|
|
|
x2 = ((b/a2) - (a1/a2)*x1)
|
|
|
|
|
2018-10-08 18:02:33 +00:00
|
|
|
|
2018-10-08 16:31:00 +00:00
|
|
|
return x1, x2
|
|
|
|
|
|
|
|
|
2018-10-16 13:54:44 +00:00
|
|
|
def find_median(points):
|
|
|
|
num_candidates = min(5, len(points))
|
|
|
|
candidates = random.sample(points, num_candidates)
|
|
|
|
|
|
|
|
candidates.sort(key=lambda p: p.x)
|
|
|
|
median_i = num_candidates // 2
|
|
|
|
median = ((candidates[median_i - 1].x + candidates[median_i].x)/2,
|
|
|
|
(candidates[median_i - 1].y + candidates[median_i].y)/2)
|
|
|
|
|
|
|
|
return median[0]
|
|
|
|
|
2018-10-11 13:54:52 +00:00
|
|
|
def mbc_ch(points: Set[Point], flipper: callable) -> Set[Point]:
|
2018-10-16 13:54:44 +00:00
|
|
|
|
|
|
|
if len(points) < 2:
|
2018-10-08 13:17:02 +00:00
|
|
|
return points
|
|
|
|
|
|
|
|
# Find the point with median x-coordinate, and partition the points on this point
|
2018-10-16 13:54:44 +00:00
|
|
|
med_x = find_median(points)
|
2018-10-17 10:09:24 +00:00
|
|
|
#med_x = statistics.median(p.x for p in points)
|
2018-10-16 13:54:44 +00:00
|
|
|
#print(med_x)
|
2018-10-08 13:17:02 +00:00
|
|
|
|
|
|
|
# Find left and right points in regards to median
|
|
|
|
pl = {p for p in points if p.x < med_x}
|
|
|
|
pr = {p for p in points if p.x >= med_x}
|
2018-10-16 13:54:44 +00:00
|
|
|
#print("pl\n",pl)
|
|
|
|
#print("pr\n",pr)
|
|
|
|
|
|
|
|
c = [flipper(med_x), flipper(1)]
|
|
|
|
A = [[flipper(-p.x), flipper(-1)] for p in points]
|
|
|
|
b = [flipper(-p.y) for p in points]
|
2018-09-24 13:27:08 +00:00
|
|
|
|
|
|
|
# Find the bridge over the vertical line in pm
|
2018-10-16 13:54:44 +00:00
|
|
|
#slope, intercept = solve_2dlp((flipper(med_x), flipper(1)),
|
|
|
|
# [((flipper(-p.x), flipper(-1)), flipper(-p.y)) for p in points]) # confirmed correct
|
|
|
|
|
|
|
|
slope, intercept = new_solve_2dlp((flipper(med_x), flipper(1)),
|
|
|
|
[((flipper(-p.x), flipper(-1)), flipper(-p.y)) for p in points])
|
|
|
|
|
|
|
|
|
|
|
|
#print("slope, intercept:",slope, intercept)
|
|
|
|
|
|
|
|
res = linprog(c, A, b, bounds=[[None, None], [None, None]], options={"tol": 0.01})
|
|
|
|
#print("res0, res1:",res.x[0], res.x[1])
|
|
|
|
|
|
|
|
#slope, intercept = res.x[0], res.x[1]
|
|
|
|
|
|
|
|
#display_line_only(points, slope, intercept, [])
|
2018-10-08 13:17:02 +00:00
|
|
|
|
|
|
|
# Find the two points which are on the line, should work
|
2018-10-16 13:54:44 +00:00
|
|
|
#on = {p for p in points if sidedness(slope, intercept, p, flipper) == Side.ON}
|
|
|
|
#print("On Points:",on)
|
|
|
|
#left_point = min(on)
|
|
|
|
#right_point = max(on)
|
|
|
|
|
2018-10-18 09:53:43 +00:00
|
|
|
#dist_to_line = lambda p: abs(intercept + slope * p.x - p.y)/sqrt(1 + slope**2)
|
|
|
|
#left_point = min(pl, key = dist_to_line)
|
|
|
|
#right_point = min(pr, key=dist_to_line)
|
2018-10-16 13:54:44 +00:00
|
|
|
|
|
|
|
#display_line_only(points, slope, intercept, [left_point, right_point])
|
|
|
|
|
|
|
|
|
2018-10-18 09:53:43 +00:00
|
|
|
left_point = next(p for p in pl if sidedness(slope, intercept, p, flipper) == Side.ON)
|
|
|
|
right_point = next(p for p in pr if sidedness(slope, intercept, p, flipper) == Side.ON)
|
2018-10-16 13:54:44 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def find_med_point(points, med_x):
|
|
|
|
for p in points:
|
|
|
|
if med_x+0.001 >= p.x >= med_x-0.001:
|
|
|
|
return {p}
|
|
|
|
return {}
|
|
|
|
|
|
|
|
#print("med point:",find_med_point(points, med_x))
|
|
|
|
|
|
|
|
#display_line_only(points, slope, intercept, {left_point, right_point})
|
2018-10-08 13:17:02 +00:00
|
|
|
|
|
|
|
# Prune the points between the two line points
|
2018-10-11 15:10:31 +00:00
|
|
|
pl = {p for p in pl if p.x <= left_point.x}
|
|
|
|
pr = {p for p in pr if p.x >= right_point.x}
|
2018-10-08 13:17:02 +00:00
|
|
|
|
2018-10-11 13:54:52 +00:00
|
|
|
return set.union(mbc_ch(pl, flipper), {left_point, right_point}, mbc_ch(pr, flipper))
|
2018-10-08 13:17:02 +00:00
|
|
|
|
|
|
|
|
2018-10-11 12:38:59 +00:00
|
|
|
def mbc(points: Set[Point]) -> Set[Point]:
|
|
|
|
return set.union(mbc_ch(points, lambda x: x), mbc_ch(points, lambda x: -x))
|
2018-10-08 13:17:02 +00:00
|
|
|
|
|
|
|
|
2018-10-11 12:38:59 +00:00
|
|
|
if __name__ == '__main__':
|
2018-10-17 10:09:24 +00:00
|
|
|
random.seed(1337_420)
|
|
|
|
points = {gen_point(0, 20) for _ in range(20)}
|
|
|
|
#points = {gen_circular_point(1, 100, 50) for _ in range(200)}
|
|
|
|
#points = {gen_triangular_point(Point(1,1), Point(51,1), Point(26, 30)) for _ in range(200)}
|
2018-10-16 13:54:44 +00:00
|
|
|
|
|
|
|
#points = {Point(x=-33.11091053638924, y=38.88967778961347), Point(x=61.20269947424177, y=-78.96305419217254), Point(x=99.44053842147957, y=-89.11579172297581), Point(x=-92.40380889537532, y=84.33904351991652), Point(x=-90.63139185545595, y=-91.13793846505985)}
|
|
|
|
|
2018-10-17 10:09:24 +00:00
|
|
|
#points = {Point(x=5.2, y=9.7), Point(x=5.3, y=4.9), Point(x=3.3, y=3.6), Point(x=9.2, y=4.8), Point(x=9.7, y=5.7), Point(x=5.6, y=8.7)}
|
2018-10-11 12:38:59 +00:00
|
|
|
|
|
|
|
upper_hull_points = mbc_ch(points, lambda x: x)
|
|
|
|
lower_hull_points = mbc_ch(points, lambda x: -x)
|
|
|
|
|
|
|
|
display(points, upper_hull_points.union(lower_hull_points))
|