BerGeo/h2/util.py

203 lines
5.3 KiB
Python
Raw Normal View History

2018-10-09 17:26:55 +00:00
import random
2018-10-18 09:53:43 +00:00
from collections import namedtuple, defaultdict
2018-10-09 17:26:55 +00:00
from enum import Enum, auto
from typing import Set
2018-10-16 12:51:51 +00:00
from math import cos, sin, sqrt, pi
2018-10-09 17:26:55 +00:00
import matplotlib.pyplot as plt
import numpy as np
Point = namedtuple('Point', 'x y')
Vector = namedtuple('Vector', 'x y')
def gen_point(lower: int = 0, upper: int = 10) -> Point:
a = random.uniform(lower, upper)
b = random.uniform(lower, upper)
2018-10-11 12:38:59 +00:00
#x_i = random.uniform(lower, upper)
#p_i = Point(x_i, a * x_i + b)
return Point(a, b)
2018-10-09 17:26:55 +00:00
def display(points: Set[Point], hull: Set[Point]):
x = [point.x for point in points]
y = [point.y for point in points]
h_x = [point.x for point in hull]
h_y = [point.y for point in hull]
plt.plot(h_x, h_y, 'ro')
plt.scatter(x, y)
plt.show()
2018-10-16 12:51:51 +00:00
def gen_circular_point(lower : int = 0, upper: int = 10, radius: int = 5) -> Point:
a = random.uniform(lower, upper) * 2 * pi
r = radius * sqrt(random.uniform(lower, upper))
x = r * cos(a)
y = r * sin(a)
return Point(x,y)
def gen_weird_point(lower : int = 0, upper: int = 10) -> Point:
x = random.uniform(lower, upper)
y = x**2
2018-10-16 13:54:44 +00:00
if x < 0:
return Point(random.uniform(x, -x), y)
return Point(random.uniform(-x, x), y)
2018-10-16 12:51:51 +00:00
2018-10-18 09:53:43 +00:00
def read_and_prep_data(filename):
data = open(filename).read()
lines = data.split('\n')
data = defaultdict(list)
for line in lines[1:]:
all_vars = line.split("\t\t")
name, points, time = all_vars
data[name.strip()].append([points, time[:8]])
return data
def gen_graph(data):
graham = data['graham']
quick = data['quick']
mbch = data['mbch']
2018-10-18 16:41:18 +00:00
mbch2 = data['mbch2']
2018-10-18 09:53:43 +00:00
gift = data['gift']
graham_x = [p[0] for p in graham]
graham_y = [p[1] for p in graham]
quick_x = [p[0] for p in quick]
quick_y = [p[1] for p in quick]
mbch_x = [p[0] for p in mbch]
mbch_y = [p[1] for p in mbch]
2018-10-18 16:41:18 +00:00
mbch2_x = [p[0] for p in mbch2]
mbch2_y = [p[1] for p in mbch2]
2018-10-18 09:53:43 +00:00
gift_x = [p[0] for p in gift]
gift_y = [p[1] for p in gift]
plt.plot(graham_x, graham_y)
plt.plot(quick_x, quick_y)
plt.plot(mbch_x, mbch_y)
2018-10-18 16:41:18 +00:00
plt.plot(mbch2_x, mbch2_y)
2018-10-18 09:53:43 +00:00
plt.plot(gift_x, gift_y)
2018-10-18 16:41:18 +00:00
plt.legend(['graham', 'quick', 'mbch', 'mbch2', 'gift'], loc='upper left')
2018-10-18 09:53:43 +00:00
plt.show()
2018-10-16 12:51:51 +00:00
def gen_triangular_point(left : Point, right : Point, top : Point):
r1 = random.uniform(0,1)
r2 = random.uniform(0,1)
return Point((1 - sqrt(r1)) * left.x + (sqrt(r1) * (1 - r2)) * right.x + (sqrt(r1) * r2) * top.x,
(1 - sqrt(r1)) * left.y + (sqrt(r1) * (1 - r2)) * right.y + (sqrt(r1) * r2) * top.y)
2018-10-11 13:54:52 +00:00
def display_line_only(points: Set[Point], slope: float, intercept: float, line_points: Set[Point]):
2018-10-09 17:26:55 +00:00
x = [point.x for point in points]
y = [point.y for point in points]
plt.scatter(x, y)
# Plot a line from slope and intercept
axes = plt.gca()
x_vals = np.array(axes.get_xlim())
y_vals = intercept + slope * x_vals
for point in line_points:
plt.plot(point.x, point.y, 'go')
plt.plot(x_vals, y_vals, '--')
plt.show()
class Side(Enum):
ON = auto()
ABOVE = auto()
BELOW = auto()
2018-10-21 14:59:17 +00:00
def stacked_bar(ax, data, series_labels, category_labels=None,
show_values=True, value_format="{}", y_label=None,
grid=False, reverse=False):
2018-10-21 14:59:17 +00:00
"""
Plots a stacked bar chart with the data and labels provided (https://stackoverflow.com/a/50205834).
Keyword arguments:
data -- 2-dimensional numpy array or nested list
containing data for each series in rows
series_labels -- list of series labels (these appear in
the legend)
category_labels -- list of category labels (these appear
on the x-axis)
show_values -- If True then numeric value labels will
be shown on each bar
value_format -- Format string for numeric value labels
(default is "{}")
y_label -- Label for y-axis (str)
grid -- If True display grid
reverse -- If True reverse the order that the
series are displayed (left-to-right
or right-to-left)
"""
ny = len(data[0])
ind = list(range(ny))
axes = []
cum_size = np.zeros(ny)
data = np.array(data)
if reverse:
data = np.flip(data, axis=1)
category_labels = reversed(category_labels)
for i, row_data in enumerate(data):
axes.append(ax.bar(ind, row_data, bottom=cum_size,
2018-10-21 14:59:17 +00:00
label=series_labels[i]))
cum_size += row_data
if category_labels:
plt.sca(ax)
2018-10-21 14:59:17 +00:00
plt.xticks(ind, category_labels)
if y_label:
plt.ylabel(y_label)
ax.legend()
# Reverse legend (https://stackoverflow.com/a/34576778)
handles, labels = ax.get_legend_handles_labels()
ax.legend(handles[::-1], labels[::-1])
2018-10-21 14:59:17 +00:00
if grid:
ax.grid()
2018-10-21 14:59:17 +00:00
if show_values:
for axis in axes:
for bar in axis:
w, h = bar.get_width(), bar.get_height()
if h != 0:
ax.text(bar.get_x() + w/2, bar.get_y() + h/2,
2018-10-21 14:59:17 +00:00
value_format.format(h), ha="center",
va="center")
#plt.show()