Migrating to using FastAPI for exposing API to openwebui
This commit is contained in:
parent
20bfd588f6
commit
ab0531cf05
|
@ -1,49 +1,11 @@
|
|||
import logging
|
||||
|
||||
import json
|
||||
import prompt_toolkit
|
||||
import prompt_toolkit.auto_suggest
|
||||
import prompt_toolkit.history
|
||||
from langchain_core.messages import HumanMessage, SystemMessage, BaseMessage
|
||||
from langchain_ollama import ChatOllama
|
||||
from langgraph.prebuilt import create_react_agent
|
||||
from langmem import create_memory_manager
|
||||
import dataclasses
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
from . import tools
|
||||
|
||||
cli_history = prompt_toolkit.history.FileHistory('output/cli_history.txt')
|
||||
|
||||
MODEL = 'hf.co/unsloth/Qwen3-30B-A3B-GGUF:Q4_K_M'
|
||||
|
||||
|
||||
def create_raw_model():
|
||||
return ChatOllama(model=MODEL)
|
||||
|
||||
def create_model():
|
||||
available_tools = tools.get_tools()
|
||||
logger.info('Available tools:')
|
||||
for tool in available_tools:
|
||||
logger.info('- %s', tool.name)
|
||||
|
||||
llm = create_raw_model()
|
||||
llm.bind_tools(tools=available_tools)
|
||||
return create_react_agent(llm, tools=available_tools)
|
||||
|
||||
|
||||
SYSTEM_MESSAGE = """
|
||||
You are a useful assistant with access to built in system tools.
|
||||
Format responses as markdown.
|
||||
Provide links when available.
|
||||
"""
|
||||
|
||||
from fastapi import FastAPI
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from fastapi.responses import StreamingResponse
|
||||
from fastapi.encoders import jsonable_encoder
|
||||
|
||||
from . import tools
|
||||
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
origins = [
|
||||
|
@ -61,115 +23,7 @@ app.add_middleware(
|
|||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
@dataclasses.dataclass(frozen=True)
|
||||
class OpenAIMessage:
|
||||
role: str
|
||||
content: str
|
||||
|
||||
@dataclasses.dataclass(frozen=True)
|
||||
class OpenAIRequest:
|
||||
model: str
|
||||
messages: list[OpenAIMessage]
|
||||
stream: bool
|
||||
|
||||
@dataclasses.dataclass(frozen=True)
|
||||
class OpenAIUsage:
|
||||
prompt_tokens: int
|
||||
completion_tokens: int
|
||||
total_tokens: int
|
||||
|
||||
@dataclasses.dataclass(frozen=True)
|
||||
class OpenAIMessageSeq:
|
||||
index: int
|
||||
message: OpenAIMessage
|
||||
|
||||
@dataclasses.dataclass(frozen=True)
|
||||
class OpenAIResponse:
|
||||
id: str
|
||||
object: str
|
||||
created: int
|
||||
model: str
|
||||
system_fingerprint: str
|
||||
choices: list[OpenAIMessageSeq]
|
||||
usage: OpenAIUsage
|
||||
|
||||
memory_manager = create_memory_manager(
|
||||
create_raw_model(),
|
||||
instructions="Extract all noteworthy facts, events, and relationships. Indicate their importance.",
|
||||
enable_inserts=True,
|
||||
)
|
||||
|
||||
llm = create_model()
|
||||
|
||||
def invoke_model(messages_input: list[OpenAIMessage]):
|
||||
messages = [{'role': m.role, 'content': m.content} for m in messages_input]
|
||||
return llm.invoke(
|
||||
{
|
||||
'messages': messages,
|
||||
},
|
||||
)
|
||||
|
||||
@app.post('/v1/chat/completions')
|
||||
async def chat_completions(
|
||||
request: OpenAIRequest
|
||||
) -> OpenAIResponse:
|
||||
print(request)
|
||||
def fjerp():
|
||||
derp = invoke_model(request.messages)['messages']
|
||||
choices = [OpenAIMessageSeq(idx,OpenAIMessage(m.type, m.content)) for idx,m in enumerate(derp)]
|
||||
return OpenAIResponse(
|
||||
id = 'test1',
|
||||
object='chat.completion',
|
||||
created=1746999397,
|
||||
model = request.model,
|
||||
system_fingerprint=request.model,
|
||||
choices=choices,
|
||||
usage = OpenAIUsage(0,0,0)
|
||||
)
|
||||
|
||||
async def response_stream():
|
||||
yield json.dumps(jsonable_encoder(fjerp()))
|
||||
if request.stream:
|
||||
return StreamingResponse(response_stream())
|
||||
return fjerp()
|
||||
|
||||
@app.get('/v1/models')
|
||||
async def models():
|
||||
return {"object":"list","data":[
|
||||
{"id":"test_langgraph","object":"model","created":1746919302,"owned_by":"jmaa"},
|
||||
]}
|
||||
|
||||
|
||||
|
||||
def main_cli():
|
||||
messages = [SystemMessage(SYSTEM_MESSAGE)]
|
||||
prev_idx = 0
|
||||
while True:
|
||||
user_input = prompt_toolkit.prompt(
|
||||
'Human: ',
|
||||
history=cli_history,
|
||||
auto_suggest=prompt_toolkit.auto_suggest.AutoSuggestFromHistory(),
|
||||
)
|
||||
if user_input == '/memories':
|
||||
memories = memory_manager.invoke({"messages": messages})
|
||||
print(memories)
|
||||
else:
|
||||
messages.append(HumanMessage(user_input))
|
||||
|
||||
result = invoke_model(messages)
|
||||
messages = result['messages']
|
||||
for msg in messages[prev_idx:]:
|
||||
print(msg.pretty_repr())
|
||||
del msg
|
||||
prev_idx = len(messages)
|
||||
|
||||
|
||||
def main_server():
|
||||
pass
|
||||
|
||||
def main():
|
||||
logging.basicConfig(level='INFO')
|
||||
main_server()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
for tool in tools.get_tools():
|
||||
component, method = tool.__name__.split('.')
|
||||
path = f'/{component}/{method}'
|
||||
app.get(path, response_model=None)(tool)
|
||||
|
|
173
test_langgraph/main_openai_api.py
Normal file
173
test_langgraph/main_openai_api.py
Normal file
|
@ -0,0 +1,173 @@
|
|||
import logging
|
||||
|
||||
import json
|
||||
import prompt_toolkit
|
||||
import prompt_toolkit.auto_suggest
|
||||
import prompt_toolkit.history
|
||||
from langchain_core.messages import HumanMessage, SystemMessage, BaseMessage
|
||||
from langchain_ollama import ChatOllama
|
||||
from langgraph.prebuilt import create_react_agent
|
||||
from langmem import create_memory_manager
|
||||
import dataclasses
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
from . import tools
|
||||
|
||||
cli_history = prompt_toolkit.history.FileHistory('output/cli_history.txt')
|
||||
|
||||
MODEL = 'hf.co/unsloth/Qwen3-30B-A3B-GGUF:Q4_K_M'
|
||||
|
||||
|
||||
def create_raw_model():
|
||||
return ChatOllama(model=MODEL)
|
||||
|
||||
def create_model():
|
||||
available_tools = tools.get_tools()
|
||||
logger.info('Available tools:')
|
||||
for tool in available_tools:
|
||||
logger.info('- %s', tool.name)
|
||||
|
||||
llm = create_raw_model()
|
||||
llm.bind_tools(tools=available_tools)
|
||||
return create_react_agent(llm, tools=available_tools)
|
||||
|
||||
|
||||
SYSTEM_MESSAGE = """
|
||||
You are a useful assistant with access to built in system tools.
|
||||
Format responses as markdown.
|
||||
Provide links when available.
|
||||
"""
|
||||
|
||||
from fastapi import FastAPI
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from fastapi.responses import StreamingResponse
|
||||
from fastapi.encoders import jsonable_encoder
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
origins = [
|
||||
"http://localhost.tiangolo.com",
|
||||
"https://localhost.tiangolo.com",
|
||||
"http://localhost",
|
||||
"http://localhost:8080",
|
||||
]
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=origins,
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
@dataclasses.dataclass(frozen=True)
|
||||
class OpenAIMessage:
|
||||
role: str
|
||||
content: str
|
||||
|
||||
@dataclasses.dataclass(frozen=True)
|
||||
class OpenAIRequest:
|
||||
model: str
|
||||
messages: list[OpenAIMessage]
|
||||
stream: bool
|
||||
|
||||
@dataclasses.dataclass(frozen=True)
|
||||
class OpenAIUsage:
|
||||
prompt_tokens: int
|
||||
completion_tokens: int
|
||||
total_tokens: int
|
||||
|
||||
@dataclasses.dataclass(frozen=True)
|
||||
class OpenAIMessageSeq:
|
||||
index: int
|
||||
message: OpenAIMessage
|
||||
|
||||
@dataclasses.dataclass(frozen=True)
|
||||
class OpenAIResponse:
|
||||
id: str
|
||||
object: str
|
||||
created: int
|
||||
model: str
|
||||
system_fingerprint: str
|
||||
choices: list[OpenAIMessageSeq]
|
||||
usage: OpenAIUsage
|
||||
|
||||
memory_manager = create_memory_manager(
|
||||
create_raw_model(),
|
||||
instructions="Extract all noteworthy facts, events, and relationships. Indicate their importance.",
|
||||
enable_inserts=True,
|
||||
)
|
||||
|
||||
llm = create_model()
|
||||
|
||||
def invoke_model(messages_input: list[OpenAIMessage]):
|
||||
messages = [{'role': m.role, 'content': m.content} for m in messages_input]
|
||||
return llm.invoke(
|
||||
{
|
||||
'messages': messages,
|
||||
},
|
||||
)
|
||||
|
||||
@app.post('/v1/chat/completions')
|
||||
async def chat_completions(
|
||||
request: OpenAIRequest
|
||||
) -> OpenAIResponse:
|
||||
print(request)
|
||||
def fjerp():
|
||||
derp = invoke_model(request.messages)['messages']
|
||||
choices = [OpenAIMessageSeq(idx,OpenAIMessage(m.type, m.content)) for idx,m in enumerate(derp)]
|
||||
return OpenAIResponse(
|
||||
id = 'test1',
|
||||
object='chat.completion',
|
||||
created=1746999397,
|
||||
model = request.model,
|
||||
system_fingerprint=request.model,
|
||||
choices=choices,
|
||||
usage = OpenAIUsage(0,0,0)
|
||||
)
|
||||
|
||||
async def response_stream():
|
||||
yield json.dumps(jsonable_encoder(fjerp()))
|
||||
if request.stream:
|
||||
return StreamingResponse(response_stream())
|
||||
return fjerp()
|
||||
|
||||
@app.get('/v1/models')
|
||||
async def models():
|
||||
return {"object":"list","data":[
|
||||
{"id":"test_langgraph","object":"model","created":1746919302,"owned_by":"jmaa"},
|
||||
]}
|
||||
|
||||
|
||||
|
||||
def main_cli():
|
||||
messages = [SystemMessage(SYSTEM_MESSAGE)]
|
||||
prev_idx = 0
|
||||
while True:
|
||||
user_input = prompt_toolkit.prompt(
|
||||
'Human: ',
|
||||
history=cli_history,
|
||||
auto_suggest=prompt_toolkit.auto_suggest.AutoSuggestFromHistory(),
|
||||
)
|
||||
if user_input == '/memories':
|
||||
memories = memory_manager.invoke({"messages": messages})
|
||||
print(memories)
|
||||
else:
|
||||
messages.append(HumanMessage(user_input))
|
||||
|
||||
result = invoke_model(messages)
|
||||
messages = result['messages']
|
||||
for msg in messages[prev_idx:]:
|
||||
print(msg.pretty_repr())
|
||||
del msg
|
||||
prev_idx = len(messages)
|
||||
|
||||
|
||||
def main_server():
|
||||
pass
|
||||
|
||||
def main():
|
||||
logging.basicConfig(level='INFO')
|
||||
main_server()
|
||||
|
|
@ -99,7 +99,7 @@ def wrap_method(class_, method):
|
|||
wrapper.__name__ = f'{class_.__name__}.{method.__name__}'
|
||||
wrapper.__doc__ = method.__doc__
|
||||
wrapper.__annotations__ = method.__annotations__
|
||||
return tool(wrapper)
|
||||
return wrapper
|
||||
|
||||
|
||||
def wrap_all_methods_on_client(obj):
|
||||
|
|
Loading…
Reference in New Issue
Block a user