Testing memories
This commit is contained in:
parent
e42bb3df0a
commit
60ae842764
3
requirements.txt
Normal file
3
requirements.txt
Normal file
|
@ -0,0 +1,3 @@
|
|||
prompt_toolkit
|
||||
langchain[ollama]
|
||||
langgraph
|
|
@ -6,6 +6,7 @@ import prompt_toolkit.history
|
|||
from langchain_core.messages import HumanMessage, SystemMessage
|
||||
from langchain_ollama import ChatOllama
|
||||
from langgraph.prebuilt import create_react_agent
|
||||
from langmem import create_memory_manager
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
@ -13,18 +14,19 @@ from . import tools
|
|||
|
||||
cli_history = prompt_toolkit.history.FileHistory('output/cli_history.txt')
|
||||
|
||||
# MODEL = "gemma3:27b"
|
||||
# MODEL = "qwen3:latest"
|
||||
MODEL = 'hf.co/unsloth/Qwen3-30B-A3B-GGUF:Q4_K_M'
|
||||
|
||||
|
||||
def create_raw_model():
|
||||
return ChatOllama(model=MODEL)
|
||||
|
||||
def create_model():
|
||||
available_tools = tools.get_tools()
|
||||
logger.info('Available tools:')
|
||||
for tool in available_tools:
|
||||
logger.info('- %s', tool.name)
|
||||
|
||||
llm = ChatOllama(model=MODEL)
|
||||
llm = create_raw_model()
|
||||
llm.bind_tools(tools=available_tools)
|
||||
return create_react_agent(llm, tools=available_tools)
|
||||
|
||||
|
@ -37,6 +39,12 @@ Provide links when available.
|
|||
|
||||
|
||||
def main():
|
||||
memory_manager = create_memory_manager(
|
||||
create_raw_model(),
|
||||
instructions="Extract all noteworthy facts, events, and relationships. Indicate their importance.",
|
||||
enable_inserts=True,
|
||||
)
|
||||
|
||||
logging.basicConfig(level='INFO')
|
||||
messages = [SystemMessage(SYSTEM_MESSAGE)]
|
||||
llm = create_model()
|
||||
|
@ -47,6 +55,10 @@ def main():
|
|||
history=cli_history,
|
||||
auto_suggest=prompt_toolkit.auto_suggest.AutoSuggestFromHistory(),
|
||||
)
|
||||
if user_input == '/memories':
|
||||
memories = memory_manager.invoke({"messages": messages})
|
||||
print(memories)
|
||||
else:
|
||||
messages.append(HumanMessage(user_input))
|
||||
|
||||
result = llm.invoke(
|
||||
|
|
Loading…
Reference in New Issue
Block a user