OpenAI wip
This commit is contained in:
parent
60ae842764
commit
20bfd588f6
|
@ -1,12 +1,14 @@
|
||||||
import logging
|
import logging
|
||||||
|
|
||||||
|
import json
|
||||||
import prompt_toolkit
|
import prompt_toolkit
|
||||||
import prompt_toolkit.auto_suggest
|
import prompt_toolkit.auto_suggest
|
||||||
import prompt_toolkit.history
|
import prompt_toolkit.history
|
||||||
from langchain_core.messages import HumanMessage, SystemMessage
|
from langchain_core.messages import HumanMessage, SystemMessage, BaseMessage
|
||||||
from langchain_ollama import ChatOllama
|
from langchain_ollama import ChatOllama
|
||||||
from langgraph.prebuilt import create_react_agent
|
from langgraph.prebuilt import create_react_agent
|
||||||
from langmem import create_memory_manager
|
from langmem import create_memory_manager
|
||||||
|
import dataclasses
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
@ -37,17 +39,110 @@ Format responses as markdown.
|
||||||
Provide links when available.
|
Provide links when available.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
from fastapi import FastAPI
|
||||||
|
from fastapi.middleware.cors import CORSMiddleware
|
||||||
|
from fastapi.responses import StreamingResponse
|
||||||
|
from fastapi.encoders import jsonable_encoder
|
||||||
|
|
||||||
def main():
|
app = FastAPI()
|
||||||
memory_manager = create_memory_manager(
|
|
||||||
|
origins = [
|
||||||
|
"http://localhost.tiangolo.com",
|
||||||
|
"https://localhost.tiangolo.com",
|
||||||
|
"http://localhost",
|
||||||
|
"http://localhost:8080",
|
||||||
|
]
|
||||||
|
|
||||||
|
app.add_middleware(
|
||||||
|
CORSMiddleware,
|
||||||
|
allow_origins=origins,
|
||||||
|
allow_credentials=True,
|
||||||
|
allow_methods=["*"],
|
||||||
|
allow_headers=["*"],
|
||||||
|
)
|
||||||
|
|
||||||
|
@dataclasses.dataclass(frozen=True)
|
||||||
|
class OpenAIMessage:
|
||||||
|
role: str
|
||||||
|
content: str
|
||||||
|
|
||||||
|
@dataclasses.dataclass(frozen=True)
|
||||||
|
class OpenAIRequest:
|
||||||
|
model: str
|
||||||
|
messages: list[OpenAIMessage]
|
||||||
|
stream: bool
|
||||||
|
|
||||||
|
@dataclasses.dataclass(frozen=True)
|
||||||
|
class OpenAIUsage:
|
||||||
|
prompt_tokens: int
|
||||||
|
completion_tokens: int
|
||||||
|
total_tokens: int
|
||||||
|
|
||||||
|
@dataclasses.dataclass(frozen=True)
|
||||||
|
class OpenAIMessageSeq:
|
||||||
|
index: int
|
||||||
|
message: OpenAIMessage
|
||||||
|
|
||||||
|
@dataclasses.dataclass(frozen=True)
|
||||||
|
class OpenAIResponse:
|
||||||
|
id: str
|
||||||
|
object: str
|
||||||
|
created: int
|
||||||
|
model: str
|
||||||
|
system_fingerprint: str
|
||||||
|
choices: list[OpenAIMessageSeq]
|
||||||
|
usage: OpenAIUsage
|
||||||
|
|
||||||
|
memory_manager = create_memory_manager(
|
||||||
create_raw_model(),
|
create_raw_model(),
|
||||||
instructions="Extract all noteworthy facts, events, and relationships. Indicate their importance.",
|
instructions="Extract all noteworthy facts, events, and relationships. Indicate their importance.",
|
||||||
enable_inserts=True,
|
enable_inserts=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
llm = create_model()
|
||||||
|
|
||||||
|
def invoke_model(messages_input: list[OpenAIMessage]):
|
||||||
|
messages = [{'role': m.role, 'content': m.content} for m in messages_input]
|
||||||
|
return llm.invoke(
|
||||||
|
{
|
||||||
|
'messages': messages,
|
||||||
|
},
|
||||||
)
|
)
|
||||||
|
|
||||||
logging.basicConfig(level='INFO')
|
@app.post('/v1/chat/completions')
|
||||||
|
async def chat_completions(
|
||||||
|
request: OpenAIRequest
|
||||||
|
) -> OpenAIResponse:
|
||||||
|
print(request)
|
||||||
|
def fjerp():
|
||||||
|
derp = invoke_model(request.messages)['messages']
|
||||||
|
choices = [OpenAIMessageSeq(idx,OpenAIMessage(m.type, m.content)) for idx,m in enumerate(derp)]
|
||||||
|
return OpenAIResponse(
|
||||||
|
id = 'test1',
|
||||||
|
object='chat.completion',
|
||||||
|
created=1746999397,
|
||||||
|
model = request.model,
|
||||||
|
system_fingerprint=request.model,
|
||||||
|
choices=choices,
|
||||||
|
usage = OpenAIUsage(0,0,0)
|
||||||
|
)
|
||||||
|
|
||||||
|
async def response_stream():
|
||||||
|
yield json.dumps(jsonable_encoder(fjerp()))
|
||||||
|
if request.stream:
|
||||||
|
return StreamingResponse(response_stream())
|
||||||
|
return fjerp()
|
||||||
|
|
||||||
|
@app.get('/v1/models')
|
||||||
|
async def models():
|
||||||
|
return {"object":"list","data":[
|
||||||
|
{"id":"test_langgraph","object":"model","created":1746919302,"owned_by":"jmaa"},
|
||||||
|
]}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def main_cli():
|
||||||
messages = [SystemMessage(SYSTEM_MESSAGE)]
|
messages = [SystemMessage(SYSTEM_MESSAGE)]
|
||||||
llm = create_model()
|
|
||||||
prev_idx = 0
|
prev_idx = 0
|
||||||
while True:
|
while True:
|
||||||
user_input = prompt_toolkit.prompt(
|
user_input = prompt_toolkit.prompt(
|
||||||
|
@ -61,11 +156,7 @@ def main():
|
||||||
else:
|
else:
|
||||||
messages.append(HumanMessage(user_input))
|
messages.append(HumanMessage(user_input))
|
||||||
|
|
||||||
result = llm.invoke(
|
result = invoke_model(messages)
|
||||||
{
|
|
||||||
'messages': messages,
|
|
||||||
},
|
|
||||||
)
|
|
||||||
messages = result['messages']
|
messages = result['messages']
|
||||||
for msg in messages[prev_idx:]:
|
for msg in messages[prev_idx:]:
|
||||||
print(msg.pretty_repr())
|
print(msg.pretty_repr())
|
||||||
|
@ -73,5 +164,12 @@ def main():
|
||||||
prev_idx = len(messages)
|
prev_idx = len(messages)
|
||||||
|
|
||||||
|
|
||||||
|
def main_server():
|
||||||
|
pass
|
||||||
|
|
||||||
|
def main():
|
||||||
|
logging.basicConfig(level='INFO')
|
||||||
|
main_server()
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
main()
|
main()
|
||||||
|
|
|
@ -12,6 +12,11 @@ try:
|
||||||
except ImportError:
|
except ImportError:
|
||||||
pycountry = None
|
pycountry = None
|
||||||
|
|
||||||
|
try:
|
||||||
|
import fin_defs
|
||||||
|
except ImportError:
|
||||||
|
fin_defs = None
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
@ -26,6 +31,10 @@ def search(query: str):
|
||||||
def dataclasses_to_json(data):
|
def dataclasses_to_json(data):
|
||||||
if pycountry and isinstance(data, pycountry.db.Country):
|
if pycountry and isinstance(data, pycountry.db.Country):
|
||||||
return data.alpha_2
|
return data.alpha_2
|
||||||
|
if fin_defs and isinstance(data, fin_defs.AssetAmount):
|
||||||
|
return str(data)
|
||||||
|
if fin_defs and isinstance(data, fin_defs.Asset):
|
||||||
|
return data.raw_short_name()
|
||||||
if isinstance(data, list | tuple):
|
if isinstance(data, list | tuple):
|
||||||
return [dataclasses_to_json(d) for d in data]
|
return [dataclasses_to_json(d) for d in data]
|
||||||
if isinstance(data, dict):
|
if isinstance(data, dict):
|
||||||
|
@ -50,25 +59,29 @@ RETURN_FORMATS = {
|
||||||
|
|
||||||
RETURN_FORMAT = 'json'
|
RETURN_FORMAT = 'json'
|
||||||
|
|
||||||
|
MAX_TOOL_RESULT_LEN = 1000
|
||||||
|
APPEND_RESULT_TYPE_DOCS = True
|
||||||
|
|
||||||
def wrap_method(class_, method):
|
def wrap_method(class_, method):
|
||||||
logger.info('Wrapping %s.%s', class_.__name__, method.__name__)
|
logger.info('Wrapping %s.%s', class_.__name__, method.__name__)
|
||||||
is_iterator = str(method.__annotations__.get('return', '')).startswith(
|
return_type = method.__annotations__.get('return', '')
|
||||||
|
is_iterator = str(return_type).startswith(
|
||||||
'collections.abc.Iterator',
|
'collections.abc.Iterator',
|
||||||
)
|
)
|
||||||
|
|
||||||
def wrapper(input_value):
|
def wrapper(input_value):
|
||||||
if isinstance(input_value, dict):
|
|
||||||
logger.warning('Silently converting from dict to plain value!')
|
|
||||||
input_value = next(input_value.values())
|
|
||||||
logger.info(
|
logger.info(
|
||||||
'AI called %s.%s(%s)', class_.__name__, method.__name__, repr(input_value),
|
'AI called %s.%s(%s)', class_.__name__, method.__name__, repr(input_value),
|
||||||
)
|
)
|
||||||
try:
|
try:
|
||||||
|
if isinstance(input_value, dict):
|
||||||
|
logger.warning('Silently converting from dict to plain value!')
|
||||||
|
input_value = next(input_value.values())
|
||||||
result = method(input_value)
|
result = method(input_value)
|
||||||
if is_iterator:
|
if is_iterator:
|
||||||
result = list(result)
|
result = list(result)
|
||||||
return RETURN_FORMATS[RETURN_FORMAT](result)
|
result_str: str = str(RETURN_FORMATS[RETURN_FORMAT](result))
|
||||||
|
del result
|
||||||
except:
|
except:
|
||||||
logger.exception(
|
logger.exception(
|
||||||
'AI invocation of %s.%s(%s) failed!',
|
'AI invocation of %s.%s(%s) failed!',
|
||||||
|
@ -77,6 +90,11 @@ def wrap_method(class_, method):
|
||||||
repr(input_value),
|
repr(input_value),
|
||||||
)
|
)
|
||||||
raise
|
raise
|
||||||
|
if len(result_str) > MAX_TOOL_RESULT_LEN:
|
||||||
|
result_str = result_str[:MAX_TOOL_RESULT_LEN] + ' (remaining tool result elicited...)'
|
||||||
|
if APPEND_RESULT_TYPE_DOCS and (return_docs := getattr(return_type, '__doc__', None)):
|
||||||
|
result_str = result_str+'\n'+return_docs
|
||||||
|
return result_str
|
||||||
|
|
||||||
wrapper.__name__ = f'{class_.__name__}.{method.__name__}'
|
wrapper.__name__ = f'{class_.__name__}.{method.__name__}'
|
||||||
wrapper.__doc__ = method.__doc__
|
wrapper.__doc__ = method.__doc__
|
||||||
|
|
Loading…
Reference in New Issue
Block a user