1
0
personal-data/obsidian_import/__init__.py
Jon Michael Aanes a301a37f2b
Some checks are pending
Run Python tests (through Pytest) / Test (push) Waiting to run
Verify Python project can be installed, loaded and have version checked / Test (push) Waiting to run
Ruff
2024-11-26 23:02:38 +01:00

258 lines
7.4 KiB
Python

"""Obsidian Import.
Sub-module for importing time-based data into Obsidian.
"""
import dataclasses
import datetime
from collections.abc import Iterable, Iterator
from logging import getLogger
from pathlib import Path
from typing import Any
from zoneinfo import ZoneInfo
from personal_data.activity import (
ActivitySample,
Label,
RealizedActivitySample,
heuristically_realize_samples,
merge_adjacent_samples,
)
from personal_data.csv_import import determine_possible_keys, load_csv_file, start_end
from .obsidian import Event, ObsidianVault
logger = getLogger(__name__)
Row = dict[str, Any]
Rows = list[Row]
def iterate_samples_from_rows(rows: Rows) -> Iterator[ActivitySample]:
assert len(rows) > 0
if True:
event_data = rows[len(rows) // 2] # Hopefully select a useful representative.
possible_keys = determine_possible_keys(event_data)
logger.info('Found possible keys: %s', possible_keys)
del event_data
assert len(possible_keys.time_start) + len(possible_keys.time_end) >= 1
assert len(possible_keys.image) >= 0
for event_data in rows:
(start_at, end_at) = start_end(event_data, possible_keys)
labels = [
Label(k, event_data.get(k)) for k in possible_keys.misc if k in event_data
]
# Create event
yield ActivitySample(
labels=tuple(labels),
start_at=start_at,
end_at=end_at,
)
del event_data
def import_workout_csv(vault: ObsidianVault, rows: Rows) -> int:
num_updated = 0
for row in rows:
date = row['Date']
was_updated = False
mapping = {
'Cycling (mins)': ('Cycling (Duration)', 'minutes'),
'Cycling (kcals)': ('Cycling (kcals)', ''),
'Weight (Kg)': ('Weight (Kg)', ''),
}
for input_key, (output_key, unit) in mapping.items():
v = row.get(input_key)
if v is not None:
if unit:
v = str(v) + ' ' + unit
was_updated |= vault.add_statistic(date, output_key, v)
if input_key != output_key:
was_updated |= vault.add_statistic(date, input_key, None)
del input_key, output_key, unit, v
if was_updated:
num_updated += 1
del row, date
return num_updated
def import_step_counts_csv(vault: ObsidianVault, rows: Rows) -> int:
MINIMUM = 300
num_updated = 0
rows_per_date = {}
for row in rows:
date = row['Start'].date()
rows_per_date.setdefault(date, [])
rows_per_date[date].append(row)
del date, row
steps_per_date = {
date: sum(row['Steps'] for row in rows) for date, rows in rows_per_date.items()
}
for date, steps in steps_per_date.items():
if steps < MINIMUM:
continue
was_updated = vault.add_statistic(date, 'Steps', steps)
if was_updated:
num_updated += 1
del date, steps, was_updated
return num_updated
def escape_for_obsidian_link(link: str) -> str:
return link.replace(':', ' ').replace('/', ' ').replace(' ', ' ')
@dataclasses.dataclass(frozen=True)
class EventContent:
verb: str
subject: str
comment: str
def import_activity_sample_csv(
vault: ObsidianVault,
rows: Rows,
content_mapper,
group_category: str | None = None,
) -> int:
samples = heuristically_realize_samples(list(iterate_samples_from_rows(rows)))
if group_category is not None:
samples = merge_adjacent_samples(list(samples), group_category)
timezone = ZoneInfo(
'Europe/Copenhagen',
) # TODO: Parameterize in an intelligent manner
samples_per_date: dict[datetime.date, list[RealizedActivitySample]] = {}
for sample in samples:
date: datetime.date = sample.start_at.astimezone(timezone).date()
samples_per_date.setdefault(date, [])
samples_per_date[date].append(sample)
del date, sample
del rows
def map_to_event(sample: RealizedActivitySample) -> Event:
content = content_mapper(sample)
return Event(
sample.start_at,
sample.end_at,
verb=content.verb,
subject=escape_for_obsidian_link(content.subject),
comment=content.comment,
)
num_updated = 0
for date, samples in list(samples_per_date.items()):
events = [map_to_event(sample) for sample in samples]
was_updated = vault.add_events(date, events)
if was_updated:
num_updated += 1
del date, was_updated
return num_updated
def import_activity_sample_csv_from_file(
vault: ObsidianVault,
data_path: Path,
content_mapper,
**kwargs,
) -> int:
rows = load_csv_file(data_path)
logger.info('Loaded CSV with %d lines (%s)', len(rows), data_path)
num_updated = import_activity_sample_csv(vault, rows, content_mapper, **kwargs)
logger.info('Updated %d files', num_updated)
def map_watched_series_content(sample: RealizedActivitySample) -> EventContent:
subject = sample.single_label_with_category('series.name')
comment = '{} Episode {}: *{}*'.format(
sample.single_label_with_category('season.name'),
sample.single_label_with_category('episode.index'),
sample.single_label_with_category('episode.name'),
)
return EventContent(
verb='Watched',
subject=subject,
comment=comment,
)
def map_games_played_content(sample: RealizedActivitySample) -> EventContent:
subject = sample.single_label_with_category('game.name')
comment = ''
return EventContent(
verb='Played',
subject=subject,
comment=comment,
)
def import_watched_series_csv_from_file(vault: ObsidianVault) -> int:
data_path = Path('output/show_episodes_watched.csv')
return import_activity_sample_csv_from_file(
vault,
data_path,
map_watched_series_content,
)
def import_played_games_csv_from_file(vault: ObsidianVault) -> int:
data_path = Path('output/games_played.csv')
if not data_path.exists():
logger.warning('Skipping import of played games: %s is missing', data_path)
return 0
return import_activity_sample_csv_from_file(
vault,
data_path,
map_games_played_content,
group_category='game.name',
)
def import_data(obsidian_path: Path, dry_run=True):
vault = ObsidianVault(obsidian_path, read_only=dry_run and 'silent' or None)
if False:
data_path = Path('/home/jmaa/Notes/workout.csv')
rows = load_csv_file(data_path)
logger.info('Loaded CSV with %d lines', len(rows))
num_updated = import_workout_csv(vault, rows)
logger.info('Updated %d files', num_updated)
if False:
data_path = Path(
'/home/jmaa/personal-archive/misc-data/step_counts_2023-07-26_to_2024-09-21.csv',
)
rows = load_csv_file(data_path)
logger.info('Loaded CSV with %d lines', len(rows))
num_updated = import_step_counts_csv(vault, rows)
logger.info('Updated %d files', num_updated)
import_played_games_csv_from_file(vault)
import_watched_series_csv_from_file(vault)
num_dirty = len([f for f in vault.internal_file_text_cache.values() if f.is_dirty])
logger.info('dirty files in cache: %d', num_dirty)
logger.info(
'clean files in cache: %d',
len(vault.internal_file_text_cache) - num_dirty,
)
if not dry_run:
vault.flush_cache()