import csv import datetime import decimal import inspect import io from pathlib import Path import logging from collections.abc import Iterable, Mapping, Sequence from decimal import Decimal import requests import requests_cache from frozendict import frozendict from . import notification, data logger = logging.getLogger(__name__) CSV_DIALECT = 'one_true_dialect' csv.register_dialect(CSV_DIALECT, lineterminator='\n', skipinitialspace=True) def try_value(fn, s: str) -> object: try: return fn(s) except (ValueError, decimal.InvalidOperation): return None def to_value(s: str) -> object: s = s.strip() if len(s) == 0: return None if (v := try_value(Decimal, s)) is not None: return v if v := try_value(datetime.date.fromisoformat, s): return v if v := try_value(datetime.datetime.fromisoformat, s): return v if s.lower() == 'false': return False if s.lower() == 'true': return True if s.lower() == 'none': return None return s def equals_without_fields( a: Mapping[str, object], b: Mapping[str, object], fields: Iterable[str] = frozenset(), ) -> bool: a = dict(a) b = dict(b) for f in fields: del a[f], b[f] return frozendict(a) == frozendict(b) def deduplicate_by_ignoring_certain_fields( dicts: list[dict], deduplicate_ignore_columns: Iterable[str], ) -> list[dict]: """Removes duplicates that occur when ignoring certain columns. Output order is stable. """ to_remove = set() for idx1, first in enumerate(dicts): for idx2, second in enumerate(dicts[idx1 + 1 :], idx1 + 1): if equals_without_fields(first, second, deduplicate_ignore_columns): to_remove.add(idx2) to_remove = sorted(to_remove) while to_remove: del dicts[to_remove.pop()] return dicts def deduplicate_dicts( dicts: Sequence[dict], deduplicate_mode: data.DeduplicateMode, deduplicate_ignore_columns: list[str], ) -> tuple[Sequence[dict], list[str]]: assert isinstance(deduplicate_ignore_columns, list), deduplicate_ignore_columns fieldnames = [] for d in dicts: for k in d.keys(): if k not in fieldnames: fieldnames.append(k) del k del d if deduplicate_mode == data.DeduplicateMode.ONLY_LATEST: while len(dicts) >= 2 and equals_without_fields( dicts[-1], dicts[-2], deduplicate_ignore_columns, ): del dicts[-1] elif deduplicate_mode == data.DeduplicateMode.BY_ALL_COLUMNS: dicts = deduplicate_by_ignoring_certain_fields( dicts, deduplicate_ignore_columns, ) elif deduplicate_mode != data.DeduplicateMode.NONE: dicts = set(dicts) dicts = sorted(dicts, key=lambda d: tuple(str(d.get(fn, '')) for fn in fieldnames)) return dicts, fieldnames def normalize_dict(d: dict) -> frozendict: return frozendict( {k: to_value(str(v)) for k, v in d.items() if to_value(str(v)) is not None}, ) def load_csv_file(csv_file: Path) -> list[frozendict]: dicts: list[frozendict] = [] with open(csv_file) as csvfile: reader = csv.DictReader(csvfile, dialect=CSV_DIALECT) for row in reader: for k in list(row.keys()): orig = row[k] row[k] = to_value(orig) if row[k] is None: del row[k] del k, orig dicts.append(frozendict(row)) del row del csvfile return dicts def extend_csv_file( csv_file: Path, new_dicts: list[dict], deduplicate_mode: data.DeduplicateMode, deduplicate_ignore_columns: list[str], ) -> dict: assert isinstance(deduplicate_ignore_columns, list), deduplicate_ignore_columns try: dicts = load_csv_file(csv_file) except FileNotFoundError as e: logger.info('Creating file: %s', csv_file) dicts = [] original_num_dicts = len(dicts) dicts += [normalize_dict(d) for d in new_dicts] del new_dicts dicts, fieldnames = deduplicate_dicts( dicts, deduplicate_mode, deduplicate_ignore_columns, ) csvfile_in_memory = io.StringIO() writer = csv.DictWriter( csvfile_in_memory, fieldnames=fieldnames, dialect=CSV_DIALECT, ) writer.writeheader() for d in dicts: writer.writerow(d) output_csv = csvfile_in_memory.getvalue() del writer, csvfile_in_memory csv_file.parent.mkdir(parents=True,exist_ok=True) with open(csv_file, 'w') as csvfile: csvfile.write(output_csv) del csvfile logger.info( 'Extended CSV "%s" from %d to %d lines', csv_file, original_num_dicts, len(dicts), ) return { 'extended': original_num_dicts != len(dicts), 'input_lines': original_num_dicts, 'output_lines': len(dicts), 'dicts': dicts, }