import _csv import csv import datetime import io import logging import typing import urllib.parse from collections.abc import Iterable, Mapping, Sequence from pathlib import Path from typing import Any from frozendict import frozendict from . import csv_import, data logger = logging.getLogger(__name__) def csv_safe_value(v: Any) -> str: if isinstance(v, urllib.parse.ParseResult): return v.geturl() if isinstance(v, datetime.datetime): assert v.tzinfo is not None, v return str(v) def equals_without_fields( a: Mapping[str, object], b: Mapping[str, object], fields: Iterable[str] = frozenset(), ) -> bool: a = dict(a) b = dict(b) for f in fields: del a[f], b[f] return frozendict(a) == frozendict(b) def deduplicate_by_ignoring_certain_fields( dicts: list[dict], deduplicate_ignore_columns: Iterable[str], ) -> list[dict]: """Removes duplicates that occur when ignoring certain columns. Output order is stable. """ to_remove = set() for idx1, first in enumerate(dicts): for idx2, second in enumerate(dicts[idx1 + 1 :], idx1 + 1): if equals_without_fields(first, second, deduplicate_ignore_columns): to_remove.add(idx2) del idx2, second del idx1, first to_remove = sorted(to_remove) while to_remove: del dicts[to_remove.pop()] return dicts def deduplicate_dicts( dicts: Sequence[dict[str, typing.Any] | frozendict[str, typing.Any]], deduplicate_mode: data.DeduplicateMode, deduplicate_ignore_columns: list[str], ) -> tuple[Sequence[dict[str, typing.Any]], list[str]]: assert isinstance(deduplicate_ignore_columns, list), deduplicate_ignore_columns fieldnames = [] for d in dicts: for k in d.keys(): if k not in fieldnames: fieldnames.append(k) del k del d if deduplicate_mode == data.DeduplicateMode.ONLY_LATEST: while len(dicts) >= 2 and equals_without_fields( dicts[-1], dicts[-2], deduplicate_ignore_columns, ): del dicts[-1] elif deduplicate_mode == data.DeduplicateMode.BY_ALL_COLUMNS: dicts = deduplicate_by_ignoring_certain_fields( dicts, deduplicate_ignore_columns, ) elif deduplicate_mode != data.DeduplicateMode.NONE: dicts = set(dicts) dicts = sorted(dicts, key=lambda d: tuple(str(d.get(fn, '')) for fn in fieldnames)) return dicts, fieldnames def normalize_dict(d: dict[str, typing.Any]) -> frozendict[str, typing.Any]: return frozendict( { k: csv_import.csv_str_to_value(str(v)) for k, v in d.items() if csv_import.csv_str_to_value(str(v)) is not None }, ) def extend_csv_file( csv_file: Path, new_dicts: list[dict[str, typing.Any]], deduplicate_mode: data.DeduplicateMode, deduplicate_ignore_columns: list[str], ) -> dict: assert isinstance(deduplicate_ignore_columns, list), deduplicate_ignore_columns try: dicts = csv_import.load_csv_file(csv_file) except (FileNotFoundError, _csv.Error) as e: logger.info('Creating file: %s', csv_file) dicts = [] original_num_dicts = len(dicts) dicts += [normalize_dict(d) for d in new_dicts] del new_dicts dicts, fieldnames = deduplicate_dicts( dicts, deduplicate_mode, deduplicate_ignore_columns, ) csvfile_in_memory = io.StringIO() writer = csv.DictWriter( csvfile_in_memory, fieldnames=fieldnames, dialect=csv_import.CSV_DIALECT, ) writer.writeheader() for d in dicts: writable_d = {k: csv_safe_value(v) for k, v in d.items()} writer.writerow(writable_d) del d, writable_d output_csv = csvfile_in_memory.getvalue() del writer, csvfile_in_memory csv_file.parent.mkdir(parents=True, exist_ok=True) with open(csv_file, 'w') as csvfile: csvfile.write(output_csv) del csvfile logger.info( 'Extended CSV "%s" from %d to %d lines', csv_file, original_num_dicts, len(dicts), ) return { 'extended': original_num_dicts != len(dicts), 'input_lines': original_num_dicts, 'output_lines': len(dicts), 'dicts': dicts, }