Fix code style and optimization issues
- Fix variable naming: TIME_COLUMN -> time_column, l -> components, COLUMNS -> columns - Extract exception string literals to variables (EM101) - Replace assert statements with proper error handling in obsidian_import - Use dict.pop() instead of del for key removal (RUF051) - Use elif instead of else-if to reduce indentation (PLR5501) - Replace magic number 10 with MIN_COOKIES_THRESHOLD constant (PLR2004) 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
parent
2272fc1127
commit
acaedcbd3a
|
@ -11,7 +11,8 @@ logger = getLogger(__name__)
|
||||||
|
|
||||||
def iterate_samples_from_dicts(rows: list[dict[str, Any]]) -> Iterator[ActivitySample]:
|
def iterate_samples_from_dicts(rows: list[dict[str, Any]]) -> Iterator[ActivitySample]:
|
||||||
if len(rows) == 0:
|
if len(rows) == 0:
|
||||||
raise ValueError("No rows provided")
|
message = 'No rows provided'
|
||||||
|
raise ValueError(message)
|
||||||
|
|
||||||
if True:
|
if True:
|
||||||
event_data = rows[len(rows) // 2] # Hopefully select a useful representative.
|
event_data = rows[len(rows) // 2] # Hopefully select a useful representative.
|
||||||
|
@ -20,7 +21,8 @@ def iterate_samples_from_dicts(rows: list[dict[str, Any]]) -> Iterator[ActivityS
|
||||||
del event_data
|
del event_data
|
||||||
|
|
||||||
if len(possible_keys.time_start) + len(possible_keys.time_end) < 1:
|
if len(possible_keys.time_start) + len(possible_keys.time_end) < 1:
|
||||||
raise ValueError("No time columns found in data")
|
message = 'No time columns found in data'
|
||||||
|
raise ValueError(message)
|
||||||
|
|
||||||
for event_data in rows:
|
for event_data in rows:
|
||||||
"""
|
"""
|
||||||
|
@ -48,5 +50,6 @@ def iterate_samples_from_csv_file(file_path: Path) -> Iterator[ActivitySample]:
|
||||||
dicts = load_csv_file(file_path)
|
dicts = load_csv_file(file_path)
|
||||||
samples = list(iterate_samples_from_dicts(dicts))
|
samples = list(iterate_samples_from_dicts(dicts))
|
||||||
if len(samples) == 0:
|
if len(samples) == 0:
|
||||||
raise ValueError('Did not find any samples')
|
message = 'Did not find any samples'
|
||||||
|
raise ValueError(message)
|
||||||
yield from samples
|
yield from samples
|
||||||
|
|
|
@ -29,7 +29,8 @@ def determine_project_name(repo: git.Repo) -> str:
|
||||||
def get_samples_from_project(repo: git.Repo) -> Iterator[ActivitySample]:
|
def get_samples_from_project(repo: git.Repo) -> Iterator[ActivitySample]:
|
||||||
project_name = determine_project_name(repo)
|
project_name = determine_project_name(repo)
|
||||||
if project_name is None:
|
if project_name is None:
|
||||||
raise ValueError("Could not determine project name")
|
message = 'Could not determine project name'
|
||||||
|
raise ValueError(message)
|
||||||
|
|
||||||
# TODO: Branch on main or master or default
|
# TODO: Branch on main or master or default
|
||||||
|
|
||||||
|
|
|
@ -29,10 +29,10 @@ def newest_entry(csv_type: str):
|
||||||
bottle.response.status = 404
|
bottle.response.status = 404
|
||||||
return {'error': 'CSV file is empty or no data found'}
|
return {'error': 'CSV file is empty or no data found'}
|
||||||
|
|
||||||
TIME_COLUMN = 'time.current'
|
time_column = 'time.current'
|
||||||
|
|
||||||
if TIME_COLUMN in data[0]:
|
if time_column in data[0]:
|
||||||
newest = max(data, key=lambda r: r.get(TIME_COLUMN))
|
newest = max(data, key=lambda r: r.get(time_column))
|
||||||
else:
|
else:
|
||||||
newest = data[-1]
|
newest = data[-1]
|
||||||
|
|
||||||
|
|
|
@ -39,18 +39,19 @@ def to_text_duration(duration: datetime.timedelta) -> str:
|
||||||
duration -= minutes * MINUTE
|
duration -= minutes * MINUTE
|
||||||
seconds = int(duration / SECOND)
|
seconds = int(duration / SECOND)
|
||||||
|
|
||||||
l = []
|
components = []
|
||||||
if hours > 0:
|
if hours > 0:
|
||||||
l.append(f'{hours} hours')
|
components.append(f'{hours} hours')
|
||||||
if minutes > 0:
|
if minutes > 0:
|
||||||
l.append(f'{minutes} minutes')
|
components.append(f'{minutes} minutes')
|
||||||
if seconds > 0:
|
if seconds > 0:
|
||||||
l.append(f'{seconds} seconds')
|
components.append(f'{seconds} seconds')
|
||||||
return ' '.join(l)
|
return ' '.join(components)
|
||||||
|
|
||||||
|
|
||||||
def iterate_samples_from_rows(rows: Rows) -> Iterator[ActivitySample]:
|
def iterate_samples_from_rows(rows: Rows) -> Iterator[ActivitySample]:
|
||||||
assert len(rows) > 0
|
if len(rows) == 0:
|
||||||
|
raise ValueError("No rows provided for sample iteration")
|
||||||
|
|
||||||
if True:
|
if True:
|
||||||
event_data = rows[len(rows) // 2] # Hopefully select a useful representative.
|
event_data = rows[len(rows) // 2] # Hopefully select a useful representative.
|
||||||
|
@ -58,8 +59,10 @@ def iterate_samples_from_rows(rows: Rows) -> Iterator[ActivitySample]:
|
||||||
logger.info('Found possible keys: %s', possible_keys)
|
logger.info('Found possible keys: %s', possible_keys)
|
||||||
del event_data
|
del event_data
|
||||||
|
|
||||||
assert len(possible_keys.time_start) + len(possible_keys.time_end) >= 1
|
if len(possible_keys.time_start) + len(possible_keys.time_end) < 1:
|
||||||
assert len(possible_keys.image) >= 0
|
raise ValueError("No time start or end keys found in data")
|
||||||
|
if len(possible_keys.image) < 0:
|
||||||
|
raise ValueError("Invalid number of image keys found")
|
||||||
|
|
||||||
for event_data in rows:
|
for event_data in rows:
|
||||||
(start_at, end_at) = start_end(event_data, possible_keys)
|
(start_at, end_at) = start_end(event_data, possible_keys)
|
||||||
|
@ -142,10 +145,10 @@ def import_stepmania_steps_csv(vault: ObsidianVault, rows: Rows) -> int:
|
||||||
rows_per_date[date].append(row)
|
rows_per_date[date].append(row)
|
||||||
del date, row
|
del date, row
|
||||||
|
|
||||||
COLUMNS = ['score.w1', 'score.w2', 'score.w3', 'score.w4', 'score.w5']
|
columns = ['score.w1', 'score.w2', 'score.w3', 'score.w4', 'score.w5']
|
||||||
|
|
||||||
def all_steps(row: dict[str, int]):
|
def all_steps(row: dict[str, int]):
|
||||||
return sum(row[column] for column in COLUMNS)
|
return sum(row[column] for column in columns)
|
||||||
|
|
||||||
steps_per_date = {
|
steps_per_date = {
|
||||||
date: sum(all_steps(row) for row in rows)
|
date: sum(all_steps(row) for row in rows)
|
||||||
|
|
|
@ -11,6 +11,8 @@ from . import data, fetchers, notification, util
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
MIN_COOKIES_THRESHOLD = 10
|
||||||
|
|
||||||
try:
|
try:
|
||||||
import cloudscraper
|
import cloudscraper
|
||||||
except ImportError:
|
except ImportError:
|
||||||
|
@ -63,8 +65,7 @@ def get_session(
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logger.error('Expected cloudscraper, but not defined!')
|
logger.error('Expected cloudscraper, but not defined!')
|
||||||
else:
|
elif ignore_cache:
|
||||||
if ignore_cache:
|
|
||||||
logger.warning('HTTP cache disabled')
|
logger.warning('HTTP cache disabled')
|
||||||
return requests.Session()
|
return requests.Session()
|
||||||
session = session_class(
|
session = session_class(
|
||||||
|
@ -98,13 +99,13 @@ def get_cookiejar(use_cookiejar: bool):
|
||||||
if use_cookiejar:
|
if use_cookiejar:
|
||||||
logger.warning('Got cookiejar from firefox')
|
logger.warning('Got cookiejar from firefox')
|
||||||
cookiejar = browser_cookie3.firefox()
|
cookiejar = browser_cookie3.firefox()
|
||||||
if len(cookiejar) > 10:
|
if len(cookiejar) > MIN_COOKIES_THRESHOLD:
|
||||||
return cookiejar
|
return cookiejar
|
||||||
browser_cookie3.firefox(
|
browser_cookie3.firefox(
|
||||||
'/home/jmaa/.cachy/mbui5xg7.default-release/cookies.sqlite',
|
'/home/jmaa/.cachy/mbui5xg7.default-release/cookies.sqlite',
|
||||||
)
|
)
|
||||||
logger.warning('Cookiejar has %s cookies', len(cookiejar))
|
logger.warning('Cookiejar has %s cookies', len(cookiejar))
|
||||||
if len(cookiejar) > 10:
|
if len(cookiejar) > MIN_COOKIES_THRESHOLD:
|
||||||
return cookiejar
|
return cookiejar
|
||||||
logger.warning('No cookiejar is used')
|
logger.warning('No cookiejar is used')
|
||||||
return []
|
return []
|
||||||
|
|
|
@ -16,8 +16,7 @@ logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
def safe_del(d: dict, *keys: str):
|
def safe_del(d: dict, *keys: str):
|
||||||
for key in keys:
|
for key in keys:
|
||||||
if key in d:
|
d.pop(key, None)
|
||||||
del d[key]
|
|
||||||
|
|
||||||
|
|
||||||
def equals_without_fields(
|
def equals_without_fields(
|
||||||
|
@ -64,7 +63,8 @@ def deduplicate_dicts(
|
||||||
deduplicate_ignore_columns: list[str],
|
deduplicate_ignore_columns: list[str],
|
||||||
) -> tuple[list[frozendict[str, Any]], list[str]]:
|
) -> tuple[list[frozendict[str, Any]], list[str]]:
|
||||||
if not isinstance(deduplicate_ignore_columns, list):
|
if not isinstance(deduplicate_ignore_columns, list):
|
||||||
raise TypeError(deduplicate_ignore_columns)
|
message = str(deduplicate_ignore_columns)
|
||||||
|
raise TypeError(message)
|
||||||
|
|
||||||
fieldnames = []
|
fieldnames = []
|
||||||
for d in dicts:
|
for d in dicts:
|
||||||
|
@ -102,7 +102,8 @@ def normalize_dict(d: dict[str, Any] | frozendict[str, Any]) -> frozendict[str,
|
||||||
if not isinstance(d, dict) and not isinstance(d, frozendict):
|
if not isinstance(d, dict) and not isinstance(d, frozendict):
|
||||||
d = dataclass_to_dict(d)
|
d = dataclass_to_dict(d)
|
||||||
if not isinstance(d, (dict, frozendict)):
|
if not isinstance(d, (dict, frozendict)):
|
||||||
raise TypeError('Expected dict or frozendict')
|
message = 'Expected dict or frozendict'
|
||||||
|
raise TypeError(message)
|
||||||
safe_values = [
|
safe_values = [
|
||||||
(k, csv_import.csv_str_to_value(csv_import.csv_safe_value(v)))
|
(k, csv_import.csv_str_to_value(csv_import.csv_safe_value(v)))
|
||||||
for k, v in d.items()
|
for k, v in d.items()
|
||||||
|
@ -119,7 +120,8 @@ def extend_csv_file(
|
||||||
if deduplicate_ignore_columns == data.Scraper.deduplicate_ignore_columns:
|
if deduplicate_ignore_columns == data.Scraper.deduplicate_ignore_columns:
|
||||||
deduplicate_ignore_columns = []
|
deduplicate_ignore_columns = []
|
||||||
if not isinstance(deduplicate_ignore_columns, list):
|
if not isinstance(deduplicate_ignore_columns, list):
|
||||||
raise TypeError(deduplicate_ignore_columns)
|
message = str(deduplicate_ignore_columns)
|
||||||
|
raise TypeError(message)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
original_dicts = csv_import.load_csv_file(csv_file)
|
original_dicts = csv_import.load_csv_file(csv_file)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user