2024-08-25 18:08:41 +00:00
|
|
|
import csv
|
|
|
|
import datetime
|
|
|
|
import decimal
|
|
|
|
import io
|
|
|
|
import logging
|
2024-08-25 18:50:03 +00:00
|
|
|
import typing
|
|
|
|
import urllib.parse
|
|
|
|
from collections.abc import Callable, Iterable, Mapping, Sequence
|
2024-08-25 18:08:41 +00:00
|
|
|
from decimal import Decimal
|
2024-08-25 18:50:03 +00:00
|
|
|
from pathlib import Path
|
2024-08-25 18:08:41 +00:00
|
|
|
|
|
|
|
from frozendict import frozendict
|
|
|
|
|
2024-08-25 18:38:16 +00:00
|
|
|
from . import data
|
2024-08-25 18:08:41 +00:00
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
CSV_DIALECT = 'one_true_dialect'
|
|
|
|
csv.register_dialect(CSV_DIALECT, lineterminator='\n', skipinitialspace=True)
|
|
|
|
|
2024-08-25 18:38:16 +00:00
|
|
|
T = typing.TypeVar('T')
|
|
|
|
|
2024-08-25 18:50:03 +00:00
|
|
|
|
|
|
|
def try_value(fn: Callable[[str], T], s: str) -> T | None:
|
2024-08-25 18:08:41 +00:00
|
|
|
try:
|
|
|
|
return fn(s)
|
|
|
|
except (ValueError, decimal.InvalidOperation):
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
2024-08-25 19:07:52 +00:00
|
|
|
def csv_str_to_value(
|
2024-08-25 18:50:03 +00:00
|
|
|
s: str,
|
|
|
|
) -> (
|
|
|
|
str
|
|
|
|
| Decimal
|
|
|
|
| datetime.date
|
|
|
|
| datetime.datetime
|
|
|
|
| urllib.parse.ParseResult
|
|
|
|
| bool
|
|
|
|
| None
|
|
|
|
):
|
2024-08-25 18:08:41 +00:00
|
|
|
s = s.strip()
|
|
|
|
if len(s) == 0:
|
|
|
|
return None
|
2024-08-25 18:38:16 +00:00
|
|
|
if (v_decimal := try_value(Decimal, s)) is not None:
|
|
|
|
return v_decimal
|
|
|
|
if (v_date := try_value(datetime.date.fromisoformat, s)) is not None:
|
|
|
|
return v_date
|
|
|
|
if (v_datetime := try_value(datetime.datetime.fromisoformat, s)) is not None:
|
|
|
|
return v_datetime
|
|
|
|
if s.startswith(('http://', 'https://')):
|
|
|
|
return urllib.parse.urlparse(s)
|
2024-08-25 18:08:41 +00:00
|
|
|
if s.lower() == 'false':
|
|
|
|
return False
|
|
|
|
if s.lower() == 'true':
|
|
|
|
return True
|
|
|
|
if s.lower() == 'none':
|
|
|
|
return None
|
|
|
|
return s
|
|
|
|
|
2024-08-25 19:53:18 +00:00
|
|
|
|
2024-08-25 19:07:52 +00:00
|
|
|
def csv_safe_value(v: object) -> str:
|
|
|
|
if isinstance(v, urllib.parse.ParseResult):
|
|
|
|
return v.geturl()
|
2024-08-26 22:31:44 +00:00
|
|
|
if isinstance(v, datetime.datetime):
|
|
|
|
assert v.tzinfo is not None, v
|
2024-08-25 19:07:52 +00:00
|
|
|
return str(v)
|
|
|
|
|
2024-08-25 18:08:41 +00:00
|
|
|
|
|
|
|
def equals_without_fields(
|
|
|
|
a: Mapping[str, object],
|
|
|
|
b: Mapping[str, object],
|
|
|
|
fields: Iterable[str] = frozenset(),
|
|
|
|
) -> bool:
|
|
|
|
a = dict(a)
|
|
|
|
b = dict(b)
|
|
|
|
|
|
|
|
for f in fields:
|
|
|
|
del a[f], b[f]
|
|
|
|
|
|
|
|
return frozendict(a) == frozendict(b)
|
|
|
|
|
|
|
|
|
|
|
|
def deduplicate_by_ignoring_certain_fields(
|
|
|
|
dicts: list[dict],
|
|
|
|
deduplicate_ignore_columns: Iterable[str],
|
|
|
|
) -> list[dict]:
|
|
|
|
"""Removes duplicates that occur when ignoring certain columns.
|
|
|
|
|
|
|
|
Output order is stable.
|
|
|
|
"""
|
|
|
|
to_remove = set()
|
|
|
|
for idx1, first in enumerate(dicts):
|
|
|
|
for idx2, second in enumerate(dicts[idx1 + 1 :], idx1 + 1):
|
|
|
|
if equals_without_fields(first, second, deduplicate_ignore_columns):
|
|
|
|
to_remove.add(idx2)
|
2024-08-25 19:53:18 +00:00
|
|
|
del idx2, second
|
|
|
|
del idx1, first
|
2024-08-25 18:08:41 +00:00
|
|
|
|
|
|
|
to_remove = sorted(to_remove)
|
|
|
|
while to_remove:
|
|
|
|
del dicts[to_remove.pop()]
|
|
|
|
|
|
|
|
return dicts
|
|
|
|
|
|
|
|
|
|
|
|
def deduplicate_dicts(
|
2024-08-25 19:53:18 +00:00
|
|
|
dicts: Sequence[dict[str,typing.Any] | frozendict[str,typing.Any]],
|
2024-08-25 18:08:41 +00:00
|
|
|
deduplicate_mode: data.DeduplicateMode,
|
|
|
|
deduplicate_ignore_columns: list[str],
|
2024-08-25 19:53:18 +00:00
|
|
|
) -> tuple[Sequence[dict[str,typing.Any]], list[str]]:
|
2024-08-25 18:08:41 +00:00
|
|
|
assert isinstance(deduplicate_ignore_columns, list), deduplicate_ignore_columns
|
|
|
|
|
|
|
|
fieldnames = []
|
|
|
|
for d in dicts:
|
|
|
|
for k in d.keys():
|
|
|
|
if k not in fieldnames:
|
|
|
|
fieldnames.append(k)
|
|
|
|
del k
|
|
|
|
del d
|
|
|
|
|
|
|
|
if deduplicate_mode == data.DeduplicateMode.ONLY_LATEST:
|
|
|
|
while len(dicts) >= 2 and equals_without_fields(
|
|
|
|
dicts[-1],
|
|
|
|
dicts[-2],
|
|
|
|
deduplicate_ignore_columns,
|
|
|
|
):
|
|
|
|
del dicts[-1]
|
|
|
|
elif deduplicate_mode == data.DeduplicateMode.BY_ALL_COLUMNS:
|
|
|
|
dicts = deduplicate_by_ignoring_certain_fields(
|
|
|
|
dicts,
|
|
|
|
deduplicate_ignore_columns,
|
|
|
|
)
|
|
|
|
elif deduplicate_mode != data.DeduplicateMode.NONE:
|
|
|
|
dicts = set(dicts)
|
|
|
|
|
|
|
|
dicts = sorted(dicts, key=lambda d: tuple(str(d.get(fn, '')) for fn in fieldnames))
|
|
|
|
return dicts, fieldnames
|
|
|
|
|
|
|
|
|
2024-08-25 19:53:18 +00:00
|
|
|
def normalize_dict(d: dict[str,typing.Any]) -> frozendict[str,typing.Any]:
|
2024-08-25 18:08:41 +00:00
|
|
|
return frozendict(
|
2024-08-25 19:07:52 +00:00
|
|
|
{k: csv_str_to_value(str(v)) for k, v in d.items() if csv_str_to_value(str(v)) is not None},
|
2024-08-25 18:08:41 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def load_csv_file(csv_file: Path) -> list[frozendict]:
|
|
|
|
dicts: list[frozendict] = []
|
|
|
|
with open(csv_file) as csvfile:
|
|
|
|
reader = csv.DictReader(csvfile, dialect=CSV_DIALECT)
|
|
|
|
for row in reader:
|
|
|
|
for k in list(row.keys()):
|
|
|
|
orig = row[k]
|
2024-08-25 19:07:52 +00:00
|
|
|
row[k] = csv_str_to_value(orig)
|
2024-08-25 18:08:41 +00:00
|
|
|
if row[k] is None:
|
|
|
|
del row[k]
|
|
|
|
del k, orig
|
|
|
|
dicts.append(frozendict(row))
|
|
|
|
del row
|
|
|
|
del csvfile
|
|
|
|
return dicts
|
|
|
|
|
2024-08-25 18:50:03 +00:00
|
|
|
|
2024-08-25 18:08:41 +00:00
|
|
|
def extend_csv_file(
|
|
|
|
csv_file: Path,
|
|
|
|
new_dicts: list[dict],
|
|
|
|
deduplicate_mode: data.DeduplicateMode,
|
|
|
|
deduplicate_ignore_columns: list[str],
|
|
|
|
) -> dict:
|
|
|
|
assert isinstance(deduplicate_ignore_columns, list), deduplicate_ignore_columns
|
|
|
|
|
|
|
|
try:
|
|
|
|
dicts = load_csv_file(csv_file)
|
|
|
|
except FileNotFoundError as e:
|
|
|
|
logger.info('Creating file: %s', csv_file)
|
|
|
|
dicts = []
|
|
|
|
|
|
|
|
original_num_dicts = len(dicts)
|
|
|
|
dicts += [normalize_dict(d) for d in new_dicts]
|
|
|
|
del new_dicts
|
|
|
|
|
|
|
|
dicts, fieldnames = deduplicate_dicts(
|
|
|
|
dicts,
|
|
|
|
deduplicate_mode,
|
|
|
|
deduplicate_ignore_columns,
|
|
|
|
)
|
|
|
|
|
|
|
|
csvfile_in_memory = io.StringIO()
|
|
|
|
writer = csv.DictWriter(
|
|
|
|
csvfile_in_memory,
|
|
|
|
fieldnames=fieldnames,
|
|
|
|
dialect=CSV_DIALECT,
|
|
|
|
)
|
|
|
|
writer.writeheader()
|
|
|
|
for d in dicts:
|
2024-08-25 19:07:52 +00:00
|
|
|
writable_d = {k:csv_safe_value(v) for k,v in d.items()}
|
|
|
|
writer.writerow(writable_d)
|
|
|
|
del d, writable_d
|
2024-08-25 18:08:41 +00:00
|
|
|
output_csv = csvfile_in_memory.getvalue()
|
|
|
|
del writer, csvfile_in_memory
|
|
|
|
|
2024-08-25 18:50:03 +00:00
|
|
|
csv_file.parent.mkdir(parents=True, exist_ok=True)
|
2024-08-25 18:08:41 +00:00
|
|
|
with open(csv_file, 'w') as csvfile:
|
|
|
|
csvfile.write(output_csv)
|
|
|
|
del csvfile
|
|
|
|
logger.info(
|
|
|
|
'Extended CSV "%s" from %d to %d lines',
|
|
|
|
csv_file,
|
|
|
|
original_num_dicts,
|
|
|
|
len(dicts),
|
|
|
|
)
|
|
|
|
|
|
|
|
return {
|
|
|
|
'extended': original_num_dicts != len(dicts),
|
|
|
|
'input_lines': original_num_dicts,
|
|
|
|
'output_lines': len(dicts),
|
|
|
|
'dicts': dicts,
|
|
|
|
}
|