2024-04-16 22:38:57 +00:00
|
|
|
import csv
|
|
|
|
import datetime
|
2024-05-15 22:47:42 +00:00
|
|
|
import decimal
|
2024-06-02 16:01:18 +00:00
|
|
|
import inspect
|
2024-04-16 22:38:57 +00:00
|
|
|
import io
|
|
|
|
import logging
|
2024-05-21 21:37:59 +00:00
|
|
|
from collections.abc import Iterable, Mapping, Sequence
|
2024-05-15 22:29:06 +00:00
|
|
|
from decimal import Decimal
|
2024-04-16 22:38:57 +00:00
|
|
|
|
|
|
|
import requests
|
|
|
|
import requests_cache
|
|
|
|
from frozendict import frozendict
|
|
|
|
|
2024-05-09 15:58:39 +00:00
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
2024-04-16 22:38:57 +00:00
|
|
|
try:
|
|
|
|
import cfscrape
|
|
|
|
except ImportError:
|
|
|
|
cfscrape = None
|
2024-05-09 15:58:39 +00:00
|
|
|
logger.warning('cfscrape not installed: Certain fetchers might not work')
|
|
|
|
|
|
|
|
try:
|
|
|
|
import browsercookie
|
|
|
|
except ImportError:
|
|
|
|
logger.warning('browsercookie not installed: Certain fetchers might not work')
|
|
|
|
browsercookie = None
|
2024-04-16 22:38:57 +00:00
|
|
|
|
|
|
|
|
|
|
|
import personal_data.data
|
2024-05-17 22:33:47 +00:00
|
|
|
import personal_data.fetchers
|
2024-06-02 21:16:11 +00:00
|
|
|
|
2024-06-02 21:14:19 +00:00
|
|
|
from . import notification
|
2024-04-16 22:38:57 +00:00
|
|
|
|
|
|
|
CSV_DIALECT = 'one_true_dialect'
|
|
|
|
csv.register_dialect(CSV_DIALECT, lineterminator='\n', skipinitialspace=True)
|
|
|
|
|
|
|
|
logging.basicConfig()
|
|
|
|
logger.setLevel('INFO')
|
|
|
|
|
|
|
|
|
|
|
|
def try_value(fn, s: str) -> object:
|
|
|
|
try:
|
|
|
|
return fn(s)
|
2024-05-15 22:29:06 +00:00
|
|
|
except (ValueError, decimal.InvalidOperation):
|
2024-04-16 22:38:57 +00:00
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
def to_value(s: str) -> object:
|
|
|
|
s = s.strip()
|
|
|
|
if len(s) == 0:
|
|
|
|
return None
|
2024-05-15 22:29:06 +00:00
|
|
|
if (v := try_value(Decimal, s)) is not None:
|
2024-04-16 22:38:57 +00:00
|
|
|
return v
|
|
|
|
if v := try_value(datetime.date.fromisoformat, s):
|
|
|
|
return v
|
|
|
|
if v := try_value(datetime.datetime.fromisoformat, s):
|
|
|
|
return v
|
|
|
|
if s.lower() == 'false':
|
|
|
|
return False
|
|
|
|
if s.lower() == 'true':
|
|
|
|
return True
|
|
|
|
if s.lower() == 'none':
|
|
|
|
return None
|
|
|
|
return s
|
|
|
|
|
|
|
|
|
2024-05-21 21:37:59 +00:00
|
|
|
def equals_without_fields(
|
|
|
|
a: Mapping[str, object],
|
|
|
|
b: Mapping[str, object],
|
|
|
|
fields: Iterable[str] = frozenset(),
|
|
|
|
) -> bool:
|
|
|
|
a = dict(a)
|
|
|
|
b = dict(b)
|
|
|
|
|
|
|
|
for f in fields:
|
|
|
|
del a[f], b[f]
|
|
|
|
|
|
|
|
return frozendict(a) == frozendict(b)
|
|
|
|
|
2024-06-06 21:50:29 +00:00
|
|
|
|
|
|
|
def deduplicate_by_ignoring_certain_fields(
|
|
|
|
dicts: list[dict],
|
2024-06-06 21:49:52 +00:00
|
|
|
deduplicate_ignore_columns: list[str],
|
|
|
|
) -> list[dict]:
|
|
|
|
"""Removes duplicates that occur when ignoring certain columns.
|
|
|
|
|
|
|
|
Output order is stable.
|
|
|
|
"""
|
|
|
|
to_remove = set()
|
|
|
|
for idx1, first in enumerate(dicts):
|
|
|
|
for idx2, second in enumerate(dicts[idx1 + 1 :], idx1 + 1):
|
|
|
|
if equals_without_fields(first, second, deduplicate_ignore_columns):
|
|
|
|
to_remove.add(idx2)
|
|
|
|
|
|
|
|
to_remove = sorted(to_remove)
|
|
|
|
while to_remove:
|
|
|
|
del dicts[to_remove.pop()]
|
|
|
|
|
|
|
|
return dicts
|
2024-05-21 21:37:59 +00:00
|
|
|
|
2024-06-06 21:50:29 +00:00
|
|
|
|
2024-05-18 19:35:58 +00:00
|
|
|
def deduplicate_dicts(
|
|
|
|
dicts: Sequence[dict],
|
2024-04-16 22:38:57 +00:00
|
|
|
deduplicate_mode: personal_data.data.DeduplicateMode,
|
|
|
|
deduplicate_ignore_columns: list[str],
|
2024-05-18 19:35:58 +00:00
|
|
|
) -> tuple[Sequence[dict], list[str]]:
|
2024-04-16 22:38:57 +00:00
|
|
|
fieldnames = []
|
|
|
|
for d in dicts:
|
|
|
|
for k in d.keys():
|
|
|
|
if k not in fieldnames:
|
|
|
|
fieldnames.append(k)
|
|
|
|
del k
|
|
|
|
del d
|
|
|
|
|
|
|
|
if deduplicate_mode == personal_data.data.DeduplicateMode.ONLY_LATEST:
|
2024-04-23 20:58:25 +00:00
|
|
|
while len(dicts) >= 2 and equals_without_fields(
|
|
|
|
dicts[-1],
|
|
|
|
dicts[-2],
|
|
|
|
deduplicate_ignore_columns,
|
|
|
|
):
|
2024-04-16 22:38:57 +00:00
|
|
|
del dicts[-1]
|
2024-05-21 21:37:59 +00:00
|
|
|
elif deduplicate_mode == personal_data.data.DeduplicateMode.BY_ALL_COLUMNS:
|
2024-06-06 21:50:29 +00:00
|
|
|
dicts = deduplicate_by_ignoring_certain_fields(
|
|
|
|
dicts,
|
|
|
|
deduplicate_ignore_columns,
|
|
|
|
)
|
2024-04-16 22:38:57 +00:00
|
|
|
elif deduplicate_mode != personal_data.data.DeduplicateMode.NONE:
|
|
|
|
dicts = set(dicts)
|
|
|
|
|
|
|
|
dicts = sorted(dicts, key=lambda d: tuple(str(d.get(fn, '')) for fn in fieldnames))
|
2024-05-18 19:35:58 +00:00
|
|
|
return dicts, fieldnames
|
|
|
|
|
|
|
|
|
2024-05-18 19:52:22 +00:00
|
|
|
def normalize_dict(d: dict) -> frozendict:
|
|
|
|
return frozendict(
|
|
|
|
{k: to_value(str(v)) for k, v in d.items() if to_value(str(v)) is not None},
|
|
|
|
)
|
|
|
|
|
|
|
|
|
2024-05-18 19:35:58 +00:00
|
|
|
def extend_csv_file(
|
|
|
|
filename: str,
|
|
|
|
new_dicts: list[dict],
|
|
|
|
deduplicate_mode: personal_data.data.DeduplicateMode,
|
|
|
|
deduplicate_ignore_columns: list[str],
|
|
|
|
) -> dict:
|
|
|
|
dicts = []
|
|
|
|
try:
|
|
|
|
with open(filename) as csvfile:
|
|
|
|
reader = csv.DictReader(csvfile, dialect=CSV_DIALECT)
|
|
|
|
for row in reader:
|
|
|
|
for k in list(row.keys()):
|
|
|
|
orig = row[k]
|
|
|
|
row[k] = to_value(orig)
|
|
|
|
if row[k] is None:
|
|
|
|
del row[k]
|
|
|
|
del k, orig
|
|
|
|
dicts.append(frozendict(row))
|
|
|
|
del row
|
|
|
|
del csvfile
|
|
|
|
except FileNotFoundError as e:
|
|
|
|
logger.info('Creating file: %s', filename)
|
|
|
|
|
|
|
|
original_num_dicts = len(dicts)
|
2024-05-18 19:52:22 +00:00
|
|
|
dicts += [normalize_dict(d) for d in new_dicts]
|
2024-05-18 19:35:58 +00:00
|
|
|
del new_dicts
|
|
|
|
|
|
|
|
dicts, fieldnames = deduplicate_dicts(
|
|
|
|
dicts,
|
|
|
|
deduplicate_mode,
|
|
|
|
deduplicate_ignore_columns,
|
|
|
|
)
|
2024-04-16 22:38:57 +00:00
|
|
|
|
|
|
|
csvfile_in_memory = io.StringIO()
|
|
|
|
writer = csv.DictWriter(
|
|
|
|
csvfile_in_memory,
|
|
|
|
fieldnames=fieldnames,
|
|
|
|
dialect=CSV_DIALECT,
|
|
|
|
)
|
|
|
|
writer.writeheader()
|
|
|
|
for d in dicts:
|
|
|
|
writer.writerow(d)
|
|
|
|
output_csv = csvfile_in_memory.getvalue()
|
|
|
|
del writer, csvfile_in_memory
|
|
|
|
|
|
|
|
with open(filename, 'w') as csvfile:
|
|
|
|
csvfile.write(output_csv)
|
|
|
|
del csvfile
|
2024-04-16 22:45:15 +00:00
|
|
|
logger.info(
|
2024-04-16 22:38:57 +00:00
|
|
|
'Extended CSV "%s" from %d to %d lines',
|
|
|
|
filename,
|
|
|
|
original_num_dicts,
|
|
|
|
len(dicts),
|
|
|
|
)
|
|
|
|
|
|
|
|
return {
|
2024-04-23 20:58:25 +00:00
|
|
|
'extended': original_num_dicts != len(dicts),
|
|
|
|
'input_lines': original_num_dicts,
|
|
|
|
'output_lines': len(dicts),
|
|
|
|
'dicts': dicts,
|
2024-04-16 22:38:57 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
STANDARD_HEADERS = {
|
|
|
|
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64; rv:122.0) Gecko/20100101 Firefox/122.0',
|
|
|
|
# "Accept": "application/json, text/plain, */*",
|
|
|
|
'Accept-Language': 'en-US,en;q=0.5',
|
|
|
|
'Accept-Encoding': 'gzip, deflate, br',
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2024-04-17 22:02:13 +00:00
|
|
|
if cfscrape:
|
2024-04-23 20:58:25 +00:00
|
|
|
|
2024-04-17 22:02:13 +00:00
|
|
|
class CachedCfScrape(requests_cache.CacheMixin, cfscrape.CloudflareScraper):
|
|
|
|
pass
|
2024-04-16 22:38:57 +00:00
|
|
|
|
|
|
|
|
2024-06-06 21:50:29 +00:00
|
|
|
def get_session(
|
|
|
|
cookiejar: Sequence,
|
|
|
|
*,
|
|
|
|
with_cfscrape: bool,
|
|
|
|
ignore_cache: bool,
|
|
|
|
) -> requests.Session:
|
2024-04-16 22:38:57 +00:00
|
|
|
assert isinstance(with_cfscrape, bool)
|
2024-04-17 22:02:13 +00:00
|
|
|
session_class = requests_cache.CachedSession
|
2024-06-02 22:00:01 +00:00
|
|
|
if ignore_cache:
|
|
|
|
logger.warn('HTTP cache disabled')
|
2024-06-02 22:20:46 +00:00
|
|
|
return requests.Session()
|
2024-04-17 22:02:13 +00:00
|
|
|
if cfscrape:
|
|
|
|
session_class = CachedCfScrape
|
2024-06-02 15:02:04 +00:00
|
|
|
session = session_class('output/web_cache', cookies=cookiejar)
|
2024-04-16 22:38:57 +00:00
|
|
|
for cookie in cookiejar:
|
|
|
|
session.cookies.set_cookie(cookie)
|
|
|
|
return session
|
|
|
|
|
2024-04-23 20:58:25 +00:00
|
|
|
|
2024-04-28 21:45:47 +00:00
|
|
|
def available_scrapers() -> list[type[personal_data.data.Scraper]]:
|
2024-06-02 16:00:55 +00:00
|
|
|
subclasses = []
|
|
|
|
class_queue = [personal_data.data.Scraper]
|
|
|
|
while class_queue:
|
|
|
|
clazz = class_queue.pop()
|
|
|
|
if inspect.isabstract(clazz):
|
|
|
|
class_queue.extend(clazz.__subclasses__())
|
|
|
|
else:
|
|
|
|
subclasses.append(clazz)
|
|
|
|
return subclasses
|
2024-04-23 20:58:25 +00:00
|
|
|
|
2024-05-09 14:59:56 +00:00
|
|
|
|
2024-04-28 21:45:47 +00:00
|
|
|
def available_scraper_names() -> list[str]:
|
|
|
|
return [scraper_cls.__name__ for scraper_cls in available_scrapers()]
|
|
|
|
|
|
|
|
|
2024-05-09 14:59:56 +00:00
|
|
|
def main(
|
|
|
|
scraper_filter: frozenset[str],
|
|
|
|
*,
|
|
|
|
use_cookiejar: bool,
|
2024-06-02 22:00:01 +00:00
|
|
|
ignore_cache: bool,
|
|
|
|
notification_types: frozenset[notification.NotificationType],
|
2024-05-09 14:59:56 +00:00
|
|
|
) -> None:
|
2024-04-17 22:13:56 +00:00
|
|
|
if use_cookiejar:
|
|
|
|
cookiejar = browsercookie.firefox()
|
|
|
|
logger.info('Got cookiejar from firefox: %s cookies', len(cookiejar))
|
|
|
|
else:
|
|
|
|
cookiejar = []
|
|
|
|
logger.warning('No cookiejar is used')
|
2024-04-16 22:38:57 +00:00
|
|
|
|
2024-06-02 21:14:19 +00:00
|
|
|
if len(notification_types) == 0:
|
2024-06-02 21:16:11 +00:00
|
|
|
logger.info('No notifications enabled: Notifications will not be sent!')
|
2024-05-15 22:05:30 +00:00
|
|
|
|
2024-04-28 21:45:47 +00:00
|
|
|
for scraper_cls in available_scrapers():
|
2024-06-06 21:50:29 +00:00
|
|
|
session = get_session(
|
|
|
|
cookiejar,
|
|
|
|
with_cfscrape=scraper_cls.requires_cfscrape(),
|
|
|
|
ignore_cache=ignore_cache,
|
|
|
|
)
|
2024-04-16 22:38:57 +00:00
|
|
|
scraper = scraper_cls(session)
|
|
|
|
if scraper_cls.__name__ not in scraper_filter:
|
|
|
|
continue
|
2024-04-16 22:45:15 +00:00
|
|
|
logger.info(
|
2024-04-16 22:38:57 +00:00
|
|
|
'Running %s, appending to "%s"',
|
|
|
|
scraper_cls.__name__,
|
|
|
|
scraper.dataset_name,
|
|
|
|
)
|
2024-04-28 21:45:47 +00:00
|
|
|
result_rows = []
|
2024-04-16 22:38:57 +00:00
|
|
|
try:
|
|
|
|
for result in scraper.scrape():
|
|
|
|
result_rows.append(result)
|
|
|
|
del result
|
|
|
|
except requests.exceptions.HTTPError:
|
|
|
|
logger.exception('Failed in running %s', scraper_cls.__name__)
|
|
|
|
continue
|
|
|
|
status = extend_csv_file(
|
2024-05-18 19:35:58 +00:00
|
|
|
f'output/{scraper.dataset_name}.csv',
|
2024-04-16 22:38:57 +00:00
|
|
|
result_rows,
|
|
|
|
deduplicate_mode=scraper.deduplicate_mode,
|
|
|
|
deduplicate_ignore_columns=scraper.deduplicate_ignore_columns,
|
|
|
|
)
|
2024-04-16 22:45:15 +00:00
|
|
|
logger.info('Scraper done: %s', scraper.dataset_name)
|
2024-04-16 22:38:57 +00:00
|
|
|
|
2024-06-02 21:14:19 +00:00
|
|
|
if status['extended']:
|
2024-06-02 21:16:11 +00:00
|
|
|
notification.send_notifications(
|
2024-06-06 21:50:29 +00:00
|
|
|
session,
|
|
|
|
scraper_cls.__name__,
|
|
|
|
status['dicts'][-1],
|
|
|
|
notification_types,
|
2024-06-02 21:16:11 +00:00
|
|
|
)
|
2024-04-16 22:38:57 +00:00
|
|
|
|
|
|
|
del scraper, session
|